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Neutrino Mass beyond the SM

• SM: effective low energy theory with non-renormalizable terms

• new physics effects suppressed by powers of small parameter

• neutrino masses generated by dim-5 operators

     λij are dimensionless couplings;    M is some high scale

• mν small:    non-renormalizable terms (M is high)

lowest higher dimensional operator that probes new physics

• total lepton number and family lepton numbers broken
➡ lepton mixing and CP violation expected

➡ µ → e γ  ;  τ → µ γ  ;  τ → e γ decays ;  µ - e conversion

➡ neutrinos are Majorana fermions

λij

M HHLiLj ⇒ mν = λij
v2

M
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Parameters for 3 Light Neutrinos
• three neutrino mixing

• mismatch between weak and mass eigenstates

• PMNS matrix

• Dirac CP-violating phase: 
• Majorana CP-violating phases:
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Parameters for 3 Light Neutrinos
Leptonic Mixing Matrix

• Weak interaction eigenstates:                            Mass eigenstates:

• Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix:

• Three families mixing:

                        atm                     reactor                        solar                Majorana phases

! 

"
e
,  " µ ,  "#

! 

"
1
# m

1
 

"
2
# m

2

"
3
# m

3

! 

"
e

" µ

"#

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

=

U
e1

U
e2

U
e3

Uµ1 Uµ2 Uµ3

U#1 U# 2 U# 3

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

"
1

"
2

"
3

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

!e

!µ
!"

e

µ

!
W-

! 

U
LM

=

1 0 0

0 c
a

s
a

0 "s
a

c
a

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

 

c
x

0 s
x
e
"i)

0 1 0

"s
x
e
i)

0 c
x

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

 

c
s

s
s

0

"s
s
c
s

0

0 0 1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

 

1 0 0

0 e
i

1

2
*

12( )
0

0 0 e
i

1

2
*

13
+)( )

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

! 

L
cc

= "1," 2," 3( )
L

# µ
U

PMNS

+

e

µ

$

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
L

Wµ

+

! 

U
PMNS

=U
e,L
U" ,L

+

P (νa → νb) =
∣∣〈νb|ν, t

〉∣∣2 " sin2 2θ sin2

(
∆m2

4E
L

)

νµ → ντ

ν"L =
3∑

j=1

U"jνjL # = e, µ, τ

U = V




1 0 0
0 eiα21/2 0
0 0 eiα31/2





V =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





ν1, 2, 3 → m1, 2, 3

1

P (νa → νb) =
∣∣〈νb|ν, t

〉∣∣2 " sin2 2θ sin2

(
∆m2

4E
L

)

νµ → ντ

ν"L =
3∑

j=1

U"jνjL # = e, µ, τ

U = V




1 0 0
0 eiα21/2 0
0 0 eiα31/2





V =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





ν1, 2, 3 → m1, 2, 3

Lcc = ( ν1, ν2, ν3 )γµU†




e
µ
τ



 W+
µ

1

P (νa → νb) =
∣∣〈νb|ν, t

〉∣∣2 " sin2 2θ sin2

(
∆m2

4E
L

)

νµ → ντ

ν"L =
3∑

j=1

U"jνjL # = e, µ, τ

U = V




1 0 0
0 eiα21/2 0
0 0 eiα31/2





V =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





ν1, 2, 3 → m1, 2, 3

Lcc = ( ν1, ν2, ν3 )γµU†




e
µ
τ



 W+
µ

V =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





1

atm reactor solar

P (νa → νb) =
∣∣〈νb|ν, t

〉∣∣2 " sin2 2θ sin2

(
∆m2

4E
L

)

νµ → ντ

ν"L =
3∑

j=1

U"jνjL # = e, µ, τ

U = V




1 0 0
0 eiα21/2 0
0 0 eiα31/2





V =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





ν1, 2, 3 → m1, 2, 3

Lcc = ( ν1, ν2, ν3 )γµU†




e
µ
τ



 W+
µ

V =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





δ = [0, 2π]

α21, α31

1

P (νa → νb) =
∣∣〈νb|ν, t

〉∣∣2 " sin2 2θ sin2

(
∆m2

4E
L

)

νµ → ντ

ν"L =
3∑

j=1

U"jνjL # = e, µ, τ

U = V




1 0 0
0 eiα21/2 0
0 0 eiα31/2





V =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





ν1, 2, 3 → m1, 2, 3

Lcc = ( ν1, ν2, ν3 )γµU†




e
µ
τ



 W+
µ

V =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





δ = [0, 2π]

α21, α31

1



Compelling Neutrino Oscillation Evidences
Atmospheric Neutrinos:  
SuperKamiokande (up-down asymmetry, L/E, θz dependence of μ-like events)

 dominant channel:
next: K2K, MINOS, CNGS (OPERA)

Solar Neutrinos:  
Homestake, Kamiomande, SAGE, GALLEX/GNO, SK, SNO, BOREXINO, 
KamLAND

dominant channel:
next: BOREXINO, KamLAND, ...

LSND:  
dominant channel: 

MiniBOONE -- negative result (2007)

νµ and νµ disappear

νe and νe do not
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νe → νµ,τ

M1 ∼ 109 − 1012 GeV

M1 < 109 GeV

YB =
nB − nB

s
∼ 8.6× 10−11

YB % 10−2εκ

κ : efficiency factor ∼ (10−1 − 10−3)

mν ∼
√

∆m2
atm ∼ 0.05 eV, mD ∼ mt ∼ 172 GeV

⇒MR ∼ 1015GeV

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η ' 1 :

sin θ13 ∼ η ∼ 10−2, ε ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0

(MDM†
D)11
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Current Status of Oscillation Parameters
• oscillation probability:

• 3 neutrinos global analysis: [solar+KamLAND+CHOOZ+atmospheric
+K2K+Minos]

• indication of non-zero θ13:   

• Tri-bimaximal Neutrino Mixing:

Maltoni, Schwetz, Tortola, Valle (updated Sep 2007)
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Discovery phase into precision phase for some oscillation parameters

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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Tri-bimaximal Mixing

• Neutrino Oscillation Parameters [Circa 2006 + MINOS July 07] 

• Tri-bimaximal neutrino mixing:

• new KamLAND result: 
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and with the choice of b ≡ φ0ψ′
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√
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Hints of θ13 > 0 from global neutrino data analysis

G.L. Fogli1,2, E. Lisi2, A. Marrone1,2, A. Palazzo3, and A.M. Rotunno1,2

1 Dipartimento di Fisica, Università di Bari, Via Amendola 173, 70126, Bari, Italy
2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via Orabona 4, 70126 Bari, Italy

3 AHEP Group, Institut de F́ısica Corpuscular, CSIC/Universitat de València,
Edifici Instituts d’Investigació, Apt. 22085, 46071 València, Spain

We perform a global analysis of neutrino oscillation data, focusing on the unknown mixing angle
θ13, and including recent results presented at the Neutrino 2008 Conference. We discuss two con-
verging hints of θ13 > 0, each at the level of ∼1σ: an older one coming from atmospheric neutrino
data, and a newer one coming from the combination of solar and long-baseline reactor neutrino
data. Their combination provides the global estimate

sin2
θ13 = 0.016 ± 0.010 (1σ) ,

implying a preference for θ13 > 0 with non-negligible statistical significance (∼ 90% C.L.). We
discuss possible refinements of the experimental data analyses, which might sharpen such intriguing
indication.

PACS numbers: 14.60.Pq, 26.65.+t, 95.55.Vj, 28.50.Hw

Introduction. In the last decade, it has been established that neutrino flavor states (νe, νµ, ντ ) are quantum super-
positions of states (ν1, ν2, ν3) with definite masses mi [1]. The unitary mixing matrix Uαi connecting flavor and mass
states can be parametrized in terms of three mixing angles (θ12, θ13, θ23) and one CP-violating phase δ. The mass
spectrum gaps can be parametrized in terms of δm2 = m2

2 − m2
1 and of ∆m2 = m2

3 − (m2
1 + m2

2)/2 [2].
The mass-mixing oscillation parameters (δm2, sin2 θ12) and (∆m2, sin2 θ23) are rather well determined [2]. Con-

versely, only upper bounds could be placed so far on sin2 θ13 (<∼ few%), a dominant role being played by the null
results of the short-baseline CHOOZ reactor experiment [3]. A determination of θ13 > 0 would be a crucial step in
any future investigation of leptonic CP violation (i.e., of δ), and of the neutrino mass spectrum hierarchy [i.e., of
sign(∆m2)], as widely discussed, e.g., at the recent Neutrino 2008 Conference [4]. We describe here two independent
hints of θ13 > 0, which add up, for the first time, to a non-negligible confidence level of ∼90%.

Hint from atmospheric neutrino data. In a previous analysis of world neutrino oscillation data [2], we found a weak
hint in favor of θ13 > 0, at the level of ∼0.9σ, coming from atmospheric neutrino data combined with accelerator
and CHOOZ data (see Figs. 26 and 27 in [2]). We traced its origin in subleading 3ν oscillation terms driven by δm2

[5], which are most effective at cos δ = −1 (see Fig. 24 in [2]), and which could partly explain the observed excess
of sub-GeV atmospheric electron-like events.1 Such hint has persisted after combination with further long-baseline
(LBL) accelerator neutrino data [8, 9], which have not yet placed strong constraints to νe appearance. In particular,
after including the Main Injector Neutrino Oscillation Search (MINOS) data [10] presented at Neutrino 2008 [11],
and marginalizing over the leading mass-mixing parameters (δm2, sin2 θ23), we still find a ∼0.9σ hint of θ13 > 0 from
the current combination of atmospheric, LBL accelerator, and CHOOZ data,

sin2 θ13 = 0.012± 0.013 (1σ, Atm + LBL + CHOOZ), (1)

where the error scales almost linearly up to ∼3σ, within the physical range sin2 θ13 ≥ 0.

Hint from solar and KamLAND data. In past years, the above hint was not supported by independent long-baseline
reactor and solar neutrino data , which systematically preferred θ13 = 0 as best fit, both separately and in combination
[2]. Therefore, in the global data analysis, the “atmospheric ν hint” of θ13 > 0 was diluted well below 1σ, and could
be conservatively ignored [2].

1 Another refined 3ν analyses of atmospheric ν data has not found an appreciable preference for θ13 > 0 [6], while a recent (although less
documented) analysis [7] seems indeed to favor − cos δ sin θ13 > 0 as in our case.

Fogli, Lisi, Marrone, Palazzo, Rotunno, June 2008



Neutrino Mass Spectrum

• search for absolute mass scale:

• end point kinematic of tritium beta decays: 

• WMAP + 2dFRGS + Lyα:   ∑(mνi) < (0.7-1.2) eV

• neutrinoless double beta decay

Mainz:  mν < 2.2 eV
KATRIN: increase sensitivity ~ 0.2 eV

Tritium→ He3 + e− + νe

UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1) ⇒ LMA

θ12 + θc = 45o

=
1
2
− 1

2
θc cos β

tan θ2
!,exp = 0.47+0.06

−0.05

seesaw ⇒ Mν ∼




0 0 ∗
0 1 1
∗ 1 1





MT
d = Me ∼




∗ ∗ ∗
∗ ∗ 1
∗ ∗ 1





current bound: | < m > | < (0.19− 0.68) eV (CUORICINO, Feb 2008)
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Neutrino Mass Spectrum
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The known unknowns: 

• How small is θ13?

• θ23 > π/4, θ23 < π/4, θ23 = π/4? 

•  Neutrino mass hierarchy (Δm13
2) ?

•  CP violation in neutrino oscillations?



Two Theoretical Challenges 

• current data post two challenges:

• why mν << mu,d,l 

• why lepton mixing large while quark mixing small

• To answer the first question 
✴ Seesaw mechanism: most appealing scenario 
✴ can originate from GUT scale physics
✴ can also come from new TeV scale physics

• Seesaw: not sufficient to explain the whole mass matrix with mass 
hierarchy and two large and one small mixing angles

✴ Flavor Symmetries



Neutrino Mass Generation
3 ways to generate dim-5  HHLL  effective operators

• exchange singlet fermions (1c, 1w, Y=0) [type-I seesaw]

• exchange weak triplet scalar (1c, 3w, Y=2) [Type-II seesaw]

• weak triplet fermions (1c, 3w, Y=0) [type-III seesaw]

Minkowski, 1977; Yanagida, 1979; Glashow, 1979; 
Gell-mann, Ramond, Slansky,1979; 
Mohapatra, Senjanovic, 1979; 

 Lazarides, 1980; Mohapatra, Senjanovic, 1980

Foot, Lew, He, Joshi, 1989;
Ma, 1998

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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YΣY †
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Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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Testing Neutrino Mass Generation Mechanisms

• Naturally small Dirac neutrino masses:

• extra dimension: through small wave function overlap

• associated phenomenology in extra dimension

• To test seesaw scenarios for Majorana masses, need to establish 

• Lepton Number Violation

• Consequences

• neutrino-less double beta decay:

• discovery does not imply 

• LR model with low MR:
non-zero neutrinoless double beta decay
even for  

• Important to have tests @ colliders

mν != 0

1

G. Senjanović

Neutrino 08-Christchurch 14

G. Senjanović

Neutrino 08-Christchurch 14

mν != 0

yD, mν → 0

1

G. Senjanović

Violation of lepton number: ∆L = 2

• neutrino-less double beta decay ν0ββ

a text-book fact

• same sign charged lepton pairs in colliders

Keung, G.S., 83

Neutrino 08-Christchurch 3

 Keung, Senjanovic, 1980



GUT Scale Seesaw

• a natural way to generate small neutrino masses 

• Introduce right-handed neutrinos, which are SM gauge singlets
[predicted in many GUTs, e.g. SO(10)]

• The Lagrangian:

• integrating out NR: effective mass matrix

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC
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The neutrino sector is therefore described by a 2 × 2 seesaw matrix as,
(

0 mD

mT
D MR

)
. (1.84)

Diagonalizing this 2 × 2 seesaw matrix, the light and heavy neutrino mass
eigenstates are obtained as,

ν " V T
ν νL + V ∗

ν νc
L, N " νR + νc

R (1.85)

with corresponding masses

mν " −V T
ν mT

D
1

MR
mDVν , mN " MR . (1.86)

Here the unitary matrix Vν is the diagonalization matrix of the neutrino
Dirac matrix.

At temperature T < MR, RH neutrinos can generate a lepton number
asymmetry by means of out-of-equilibrium decays. The sphaleron processes
then convert ∆L into ∆B.

1.2.1.1. The Asymmetry

At the tree level, the i-th RH neutrino decays into the Higgs doublet and
the charged lepton doublet of α flavor, Ni → H + #α, where α = (e, µ, τ).
The total width of this decay is,

ΓDi =
∑

α

[
Γ(Ni → H + #α) + Γ(Ni → H + #α)

]
(1.87)

=
1

8π
(hh†)iiMi .

Suppose that the lepton number violating interactions of the lightest right-
handed neutrino, N1, wash out any lepton number asymmetry generated in
the decay of N2,3 at temperatures T % M1. (For effects due to the decays
of N2,3, see Ref. [26].) In this case with N1 decay dominating, the final
asymmetry only depends on the dynamics of N1. The out-of-equilibrium
condition requires that the total width for N1 decay, ΓD1 , to be smaller
compared to the expansion rate of the Universe at temperature T = M1,

ΓD1 < H

∣∣∣∣
T=M1

. (1.88)

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC
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is spontaneously broken, as it is a gauged subgroup of SO(10). Heavy
particles X with MX < MB−L can then generate a (B − L) asymmetry
through their decays. Nevertheless, for MX ∼ MGUT ∼ 1015 GeV, the
CP asymmetry is highly suppressed. Furthermore, one also has to worry
about the large reheating temperature TRH ∼ MGUT after the inflation,
the realization of thermal equilibrium, and in supersymmetric case, the
gravitino problem. These difficulties in GUT baryogenesis had led to a lot
of interests in EW baryogenesis, which also has its own disadvantages as
discussed in Sec. 1.1.4.

The recent advent of the evidence of neutrino masses from various neu-
trino oscillation experiments opens up a new possibility of generating the
asymmetry through the decay of the heavy neutrinos [25]. A particular
attractive framework in which small neutrino masses can naturally arise is
GUT based on SO(10) (for a review, see, i.e. Ref. [22]). SO(10) GUT
models accommodate the existence of RH neutrinos,

ψ(16) = (qL, uc
R, ec

R, dc
R, "L, νc

R) , (1.79)

which is unified along with the fifteen known fermions of each family into
a single 16-dimensional spinor representation. For hierarchical fermion
masses, one easily has

MN # MB−L ∼ MGUT , (1.80)

where N = νR +νc
R is a Majorana fermion. The decays of the right-handed

neutrino,

N → "H, N → "H , (1.81)

where H is the SU(2) Higgs doublet, can lead to a lepton number asymme-
try. After the sphaleron processes, the lepton number asymmetry is then
converted into a baryon number asymmetry.

The most general Lagrangian involving charged leptons and neutrinos
is given by,

LY = fijeRi"Lj H
† + hijνRi"LjH −

1

2
(MR)ijν

c
Ri

νRj + h.c. . (1.82)

As the RH neutrinos are singlets under the SM gauge group, Majorana
masses for the RH neutrinos are allowed by the gauge invariance. Upon
the electroweak symmetry breaking, the SM Higgs doublet gets a VEV,
〈H〉 = v, and the charged leptons and the neutrino Dirac masses, which
are much smaller than the RH neutrino Majorana masses, are generated,

m! = fv, mD = hv # MR . (1.83)

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η " 1 :

sin θ13 ∼ η ∼ 10−2, ε ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0

(MDM†
D)11

M1
∝

(
mc

mt

)2

vL < O(10−7) eV

ΓN1

H|T=M1

=
1

0.01 eV
(MDM†

D)11
M1

< 1

ε = 10−2 ×∆ε′ < (10−5 − 10−4)

= 0

J lep
CP ∼ sinαL

νµ and νµ disappear

νe and νe do not

P (νa → νb) =
∣∣〈νb|ν, t

〉∣∣2 ( sin2 2θ sin2

(
∆m2

4E
L

)

νµ → ντ

1
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∆m2
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1

~ MGUT

seesaw ⇒ Neutrinos are Majorana fermions
⇒ Lepton Number violation



Probing GUT Based Models
• A direct probe of GUT scale seesaw: LFV charged lepton decays

➡ µ → e γ  ;  τ → µ γ  ;  τ → e γ decays ;  µ - e conversion, etc...

• mSUGRA b.c.’s: slepton mass matrix diagonal at MGUT

• RG induced off-diagonal elements in slepton mass matrices

• predictions sensitive to mixing parameters and MR

FIG. 2: Examples of Feynman diagrams for slepton - neutralino and sneutrino - chargino contributions to

µ → eγ in SUSY models with slepton mass insertions.

flavor violation then arises from evolution of the Yukawa couplings and soft-breaking parameters

from the GUT scale down to the electroweak scale [30].

Feynman diagrams for the LFV radiative decays in leading log approximation involve both

neutralino - slepton (χ̃0 − #̃) loops and chargino - sneutrino (χ̃± − ν̃) loops with the emitted

photon attached to the internal charged slepton or chargino, respectively. Through evolution from

the GUT scale, the LFV neutrino Yukawa couplings are induced primarily in the mass squared

submatrix for the SU(2)L doublet sleptons, m2
L̃
(LL). We do not repeat the details here for this

complicated calculation but rather refer the reader to the pioneering paper of Hisano, Moroi, Tobe,

and Yamaguchi [30]. We simply note that the radiative decay rate is given by

Γ(#−j → #−i γ) =
e2

16π
m5

lj

(

|A(n)
L + A(c)

L |2 + |A(n)
R + A(c)

R |2
)

, (27)

where (n) and (c) refer to the neutralino and chargino loop contributions to the transition form

factors AL and AR connecting leptons of opposite chirality. The branching ratio for the flavor-

violating decay mode relative to the flavor-conserving purely lepton mode is then

BR(#−j → #−i γ) =
48π3α

G2
F

(|AL|
2 + |AR|

2). (28)

In the leading log approximation with the largest contribution coming from the left-handed

slepton mass matrix, the branching ratio is given by

BRji =
α3

G2
F m8

s
|(m2

LL)ji|
2 tan2 β, (29)

where

(m2
LL)ji = −

1

8π2
m2

0(3 + A2
0/m

2
0)Y

†
jk log

(

MG

Mk

)

Yki. (30)
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factors AL and AR connecting leptons of opposite chirality. The branching ratio for the flavor-
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Probing GUT Based Models

TABLE II: Summary of the relevant results for the five SO(10) SUSY GUT models considered in this work.

The present experimental upper limits for the branching ratios are indicated in the second line, while the

third line of the table gives the projected upper limit reaches for the Meg experiment, SuperB factory, and

next generation µ − e conversion experiment.

Models sin2 θ13 MR’s tan β |A0/m0|max BR21(µ → eγ) BR32(τ → µγ) BR(µ + T i → e + T i)

Expt. (GeV) < 1.2 × 10−11 < 4.5 × 10−8 < 4 × 10−12

Limits → < 10−13 → < 10−9 → < 10−18

AB 0.0020 2.4 × 1014 5 5 (0.2 − 9) × 10−12 (0.03 − 1) × 10−10 (0.03 − 2) × 10−12

(2.6◦) 4.5 × 108

4.5 × 108

CM 0.013 7.0 × 1012 10 12 (0.02 − 4) × 10−15 (0.02 − 5) × 10−11 (0.01 − 3) × 10−16

(6.5◦) 4.5 × 109

1.1 × 107

CY 0.0029 2.4 × 1012 10 12 (0.02 − 5) × 10−15 (0.04 − 9) × 10−13 (0.03 − 6) × 10−16

(3.1◦) 2.4 × 1012

2.4 × 1012

DR 0.0024 5.8 × 1013 50 2.5 (0.05 − 8) × 10−13 (0.02 − 3) × 10−9 (0.01 − 2) × 10−14

(2.8◦) 9.3 × 1011

1.1 × 1010

GK 0.00031 2.0 × 1015 10 2 (0.4 − 80) × 10−11 (0.004 − 1) × 10−8 (0.02 − 5) × 10−11

(1.0◦) 4.1 × 1014

6.7 × 1012

experiments, Double CHOOZ and Daya Bay. The AB, CY and DR models have similar predictions

for sin2 θ13 which will make observation of ν̄e → ν̄µ oscillation somewhat marginal at those reactors

and in the proposed NOνA and T2K long-baseline experiments [39] without a SuperBeam source.

For the GK model, the observation of such a low sin2 θ13 prediction would only take place with

a Neutrino Factory. But it is clear from Table II and the previous figures that the GK and AB

models will be tested first with the MEG experiment. From our discussion it is then clear that the

LFV branching ratios are more sensitive to large M3 than to large θ13 in the models considered.

In previous generic studies of SUSY GUT models, the rare branching ratios were nearly equally

sensitive to each of the two parameters [40].

19

prediction 
sensitive to MR

C.  Albright & M.-C.C, 2008

predictions for LFV processes in five viable SUSY SO(10) models:

 -- assuming MSUGRA boundary conditions
 -- including Dark Matter constraints from WMAP 
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FIG. 11: Branching ratio predictions for µ − e conversion vs. branching ratio predictions for µ → e + γ in

the five models considered. The more restrictive WMAP dark matter constraints apply for the thick line

segments shown.

Zeff = 17.6 and the nuclear form factor is F (q2 # −m2
µ) # 0.54 [30]. In the case of the conversion

process, we have explicitly carried out the full evolution running from the GUT scale to the Z

scale. The µ − e conversion branching ratio is then obtained from the conversion rate above by

scaling it with the µ capture rate on T i, which is quoted in [38] as (2.590± 0.012)× 106 sec−1 with

the present experimental limit on the conversion branching ratio found to be R ≤ 4 × 10−12.

In Fig. 11. we show a plot of the µ − e conversion branching ratio vs. the µ → eγ branching

ratio for each of the five models considered. We have limited the line segments by applying the

WMAP dark matter constraints of Sect. III. It is clear that the GK and AB models would be

tested first, followed by the DR, CY and CM models. In fact, a first generation µ − e conversion

experiment may be able to reach a branching ratio of 10−17, while a second generation experiment

may lower the limit from the present value of 4 × 10−12 down to 10−18. If such proves to be the

case and no signal is seen, all five models will be eliminated. Hence the conversion experiment is

inherently more powerful than the MEG experiment looking for µ → eγ which is designed to reach

a level of 10−13−10−14, sufficient only to eliminate the GK and AB models. The caveat, of course,

is that MEG is now starting to take data, while no new conversion experiment has been approved.
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LFV Rare Processes

for a given value of M1/2 as |A0/m0| increases. For the AB and GK models the experimental

branching ratio greatly limits the allowed ranges of A0/m0, while for the CM, CY, and DR models

the DM constraints limit the allowed ranges of A0/m0. In any case, the minimum predicted BR21

branching ratio occurs for A0 = 0.

One can also present similar scatter plots for the τ → µγ and τ → eγ decay modes. Since

all three decay modes are intimately related in each model through the corresponding logarithmic

terms such as that in Eq. (32), the same scatter points will appear with only the color-coding

changed (assuming one imposes the BR21 experimental limit for each plot).

Instead, we present two log-log plots for the BR32 and BR31 branching ratios against that for

BR21 in Figs. 8 and 9, where A0 = 0 has again been imposed. The thin line segments for each

model observe the soft parameters constraints imposed, while the heavier line segments observe

the more restrictive WMAP dark matter constraints. The vertical dashed line reflects the present

BR21 bound, while the horizontal dashed line refers to the present BR32 or BR31 experimental

limit, respectively [35]. It is clear from these two plots that the ongoing MEG experiment stands
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FIG. 8: Branching ratio predictions for τ → µ + γ vs. branching ratio predictions for µ → e + γ in the five

models considered. The soft SUSY breaking constraints imposed apply for the thin line segments, while the

more restrictive WMAP dark matter constraints apply for the thick line segments. The present experimental

constraints are indicated by the dashed lines.
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FIG. 9: Branching ratio predictions for τ → e + γ vs. branching ratio predictions for µ → e + γ in the five

models considered. The soft SUSY breaking constraints imposed apply for the thin line segments, while the

more restrictive WMAP dark matter constraints apply for the thick line segments.

the best chance of confirming the predictions for or eliminating the GK and AB models. Even with

a super-B factory [36], the present experimental bounds on the BR32 and BR31 branching ratios

can only be lowered by one or two orders of magnitude at most.

But recall that the line segments apply for the special case of A0 = 0. If one allows A0 to

depart from zero, the line segments will slide diagonally upward and toward the right along their

presently depicted positions by amounts that can be estimated from Figs. 3 - 7. Hence only the

lower limits on the branching ratios are robust in Figs. 8, 9 and 11.

In Table II we summarize the relevant findings from our study of the five models. The branching

ratio ranges apply for the A0 = 0 case and with the stricter WMAP dark matter constraints

imposed. It is clear that the five predictive SO(10) SUSY GUT models considered have very

representative right-handed neutrino mass spectra and predictions for sin2 θ13. The CM, DR, and

GK models have massive hierarchical spectra with M3 ranging from 1013 to 1015 GeV. The CY

model, on the other hand, has a degenerate spectrum with MR ∼ 3 × 1012 GeV, while the AB

model has degenerate M1 and M2 which can lead to resonant leptogenesis. The CM model has

a relatively large sin2 θ13 prediction which should be observable at the upcoming reactor neutrino
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TeV Seesaw without New Interactions

• Assuming no new interaction:  small neutrino mass arise with

• not totally unreasonable if small electron Yukawa allowed

• RH neutrinos may be within reach of LHC/ILC

• only way to test seesaw is by producing RH neutrinos

• Yukawa ~ O(10-6): irrelevant for colliders

• RH neutrino production: gauge interaction in the presence 
of heavy-light mixing; naively,

• Observable at colliders: require mixing

mν != 0

yD, mν → 0

MR ∼ 100 GeV

mD ∼ me ∼ 10−4 GeV

1

mν != 0

yD, mν → 0

MR ∼ 100 GeV

mD ∼ me ∼ 10−4 GeV

1

Introduction Cancellations & Symmetries Colliders Conclusions

Electroweak-Scale Singlets

What if mR ∼ 100 GeV?

mD ∼ 10−4 GeV = 100 keV ∼ me

! Not totally unreasonable

⇒ RH neutrinos may be within reach of LHC and ILC

Yukawa couplings tiny⇒ irrelevant for colliders

Gauge interactions via mixing, e.g.

N

l−

W
∝ V = mDmR

−1 ∼ 10−4 GeV
100 GeV

= 10−6

Observation at colliders needs V " 0.01
Han, Zhang, PRL 97 (2006); del Aguila, Aguilar-Saavedra, Pittau, J. Phys. Conf.
Ser. 53 (2006); Bray, Lee, Pilaftsis, hep-ph/0702294

⇒ no way?

mν != 0

yD, mν → 0

MR ∼ 100 GeV

mD ∼ me ∼ 10−4 GeV

∝ V =
mD
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∼ 10−4 GeV

100 GeV
= 10−6

1
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yD, mν → 0

MR ∼ 100 GeV

mD ∼ me ∼ 10−4 GeV

∝ V =
mD

MR
∼ 10−4 GeV

100 GeV
= 10−6

V > 0.01

1

Han, Zhang, 06;  del Aguila, 
Aguila-Saavedra, Pittau, 06; 
Bray, Lee, Pilaftsis, 07



TeV Seesaw without New Interactions

• Neutrino mass get contributions from different singlet fermions  

• neutrino mass small NOT due to seesaw, but cancellation 
among these contributions

• universality of weak interaction &  Z-width: 

• cancellation at 10-8 level to get 0.1 eV neutrino mass

• with 3 singlets:  light neutrino masses vanish if and only if

• Dirac mass matrix has rank 1

• three contributions add up to zero

• Yukawa couplings arbitrary ⇒ allowing large heavy-light mixing

Buchmuller, Wyler ‘90;  Pilaftsis, ‘92

If the heavy neutrinos are to be observable at the LHC or the ILC, their mixing angles
must not lie far below the upper limit (7) [6, 9, 10, 12, 14]:

|Vαi| ! 0.01 . (8)

Using this value, we obtain from Eq. (5) a contribution to the light neutrino mass

m(i)
ν ∼ |Vαi|2Mi = 107 eV

(

|Vαi|
0.01

)2 (

Mi

100 GeV

)

. (9)

Thus, to reconcile mν ∼ 0.1 eV with the observability of RH neutrinos at the LHC or the
ILC, one needs to arrange a cancellation between the contribution from a given RH neutrino
and some other contribution at the level of 10−8. The situation improves only slightly if
one considers more advanced machines like CLIC or an eγ collider, which could increase
the reach in the mixing angle by about an order of magnitude compared to Eq. (8) [7,8,10].

In what follows we will discuss cancellations between the contributions from different
RH neutrinos, i.e. we will stay within the framework of the type-I seesaw scenario. One
could also consider a cancellation with contributions from other mechanisms, for example
involving a Higgs triplet (type-II seesaw [40–43]), a fermion triplet (type-III seesaw [36,37])
or a radiatively generated neutrino mass [44,45]. However, in these cases contributions from
different, in general unrelated sources have to cancel, which looks extremely implausible.
The left-right symmetric models have been suggested as an exception, since there the
type-I and type-II seesaw contributions can be related [46].

2.2 Cancellation of Light Neutrino Masses

Let us consider first the necessary and sufficient conditions for an exact cancellation of
contributions to the light neutrino masses. In the case of two RH neutrinos, two matrices
have to cancel,

m(1)
ν + m(2)

ν = 0 . (10)

Together with Eq. (2) this implies [17, 19, 20] proportionality of the vectors "mi,

"m1 = y1 "m0 , "m2 = y2"m0 ("m0 ≡ m (1, α, β)T ) , (11)

and

y2
1

M1
+

y2
2

M2
= 0 . (12)

Therefore, the Dirac mass matrix has the form

mD = m





y1 y2

αy1 αy2

βy1 βy2



 . (13)

This result can be generalised to the case of three neutrinos [18, 21, 22]. The light
neutrino mass matrix vanishes if and only if the Dirac mass matrix has rank 1,

mD = m





y1 y2 y3

αy1 αy2 αy3

βy1 βy2 βy3



 , (14)

3

and if

y2
1

M1
+

y2
2

M2
+

y2
3

M3
= 0 , (15)

where the mass parameters are defined in the basis where the singlet mass matrix is
diagonal. That is, the contributions from the three RH neutrinos to mν have to be equal
up to a normalisation factor in this case as well. Under the conditions (14,15), the light
neutrino masses vanish exactly, to all orders in mDm−1

R . This can easily be seen by writing
down the 6 × 6 mass matrix M and verifying that its rank is 3 or smaller. Consequently,
the same is true for M†M, implying the existence of at least 3 vanishing mass eigenvalues.
The νN -mixing relevant for collider physics, as given by Eq. (4), is not restricted by the
cancellation condition (15) and hence allowed to be large enough to make the detection of
RH neutrinos possible.

In the following, we will show that Eqs. (14) and (15) are also necessary conditions.
Let us consider the case of k RH neutrinos coupled with three active neutrinos. (A general
consideration of the case with an equal number of left- and right-handed neutrinos has
been presented in [22].) We parametrise the contribution of the ith RH neutrino to the
light Majorana mass matrix as

m(i)
ν = µi





1 αi βi

αi α2
i αiβi

βi αiβi β2
i



 (i = 1 . . . k) . (16)

Then the 11-, 12- and 22-elements of the condition mν =
∑

i m
(i)
ν = 0 can be written as

k
∑

i=1

µi = 0 ,
k

∑

i=1

αiµi = 0 ,
k

∑

i=1

α2
i µi = 0 . (17)

Introducing xi ≡ αi/α1, and subtracting the first equation in (17) from the second and
third one, (divided by α1 and α2

1, respectively) we obtain

k
∑

i=2

(xi − 1)µi = 0 ,
k

∑

i=1

(

x2
i − 1

)

µi = 0 . (18)

Eq. (18) is a system of linear equations for µi. A similar consideration for the 11-, 13-
and 33-elements of the condition mν = 0 leads to the same system of equations with
xi → x′

i ≡ βi/β1.
For k = 2 the first equation in (18) gives µ2(x2 − 1) = 0 with the unique non-trivial

solution x2 = 1 or α1 = α2. Then the second equation is satisfied automatically. Similarly
one finds β1 = β2, and consequently m(1)

ν ∝ m(2)
ν , so that we recover Eqs. (11,12).

For k = 3 the system

(x2 − 1)µ2 + (x3 − 1)µ3 = 0 ,
(

x2
2 − 1

)

µ2 +
(

x2
3 − 1

)

µ3 = 0 (19)

has non-trivial solutions (µi &= 0) only if (x2 − 1) (x3 − 1) (x2 − x3) = 0 (zero determinant).
If this condition is satisfied with x2 &= 1 or x3 &= 1, one µi is zero and µk = −µj (k, j &= i) for

4

Buchmuller, Greub ‘91;  Ingelman, Rathsman, ‘93; 
Heusch, Minkowski, ‘94; Kersten, Smirnov, ‘07
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MR ∼ 100 GeV

mD ∼ me ∼ 10−4 GeV

∝ V =
mD

MR
∼ 10−4 GeV

100 GeV
= 10−6

V > 0.01

V < 0.1
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If the heavy neutrinos are to be observable at the LHC or the ILC, their mixing angles
must not lie far below the upper limit (7) [6, 9, 10, 12, 14]:

|Vαi| ! 0.01 . (8)

Using this value, we obtain from Eq. (5) a contribution to the light neutrino mass
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Thus, to reconcile mν ∼ 0.1 eV with the observability of RH neutrinos at the LHC or the
ILC, one needs to arrange a cancellation between the contribution from a given RH neutrino
and some other contribution at the level of 10−8. The situation improves only slightly if
one considers more advanced machines like CLIC or an eγ collider, which could increase
the reach in the mixing angle by about an order of magnitude compared to Eq. (8) [7,8,10].

In what follows we will discuss cancellations between the contributions from different
RH neutrinos, i.e. we will stay within the framework of the type-I seesaw scenario. One
could also consider a cancellation with contributions from other mechanisms, for example
involving a Higgs triplet (type-II seesaw [40–43]), a fermion triplet (type-III seesaw [36,37])
or a radiatively generated neutrino mass [44,45]. However, in these cases contributions from
different, in general unrelated sources have to cancel, which looks extremely implausible.
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type-I and type-II seesaw contributions can be related [46].
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
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TeV Seesaw without New Interactions
• symmetry justification for such cancellation:

• L-conservation; discrete subgroups of U(1)L
• A4

• neutrino masses arise as small perturbations to the cancellation 
structure

• Collider signatures
• Lepton Number Violating processes:

• leading order: mν=0 by symmetry (L-conservation) ⇒ σ = 0

• small L-violating effects ⇒ small neutrino mass

• unobservable unless fine-tuned

Kersten & Yu Smirnov, 2007
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Figure 1: Feynman diagrams for lepton-number- (left) and lepton-flavour-violating processes (right) in-
volving heavy neutrinos at the LHC.

where Γi is the width of N0
i . For Mi ∼ 100 GeV and |Vαi| ∼ 0.1, one finds Γi ∼ 0.01 GeV

[10]. The quantity ALNV also controls the contribution of the RH neutrinos to neutrinoless
double beta decay. The amplitude is proportional to ALNV with p2 → 0 and α = β = e.

All the scenarios for the suppression of the light neutrino masses discussed above involve
the conservation of lepton number, so that ALNV vanishes. As an explicit example, consider
the case of a heavy Dirac pair. Then M1 = M2 = M , and the mixing matrix of the light
and the heavy neutrinos reads

V ≈ mDm−1
R =

m√
2M





a i a 0
b i b 0
c i c 0



 (54)

in the basis where mR is diagonal and in the usual seesaw approximation m % M . In
order to check the accuracy of the approximation, we have diagonalised the 6 × 6 mass
matrix M exactly in the special case a = b = c, finding no significant changes. Obviously,
ALNV vanishes for all flavours α, β.

If L violation is introduced, ALNV will be proportional to the corresponding couplings,
which are restricted to be tiny by the smallness of neutrino masses. Hence, the suppression
of the cross section emerges in a very similar way as in the usual seesaw scenario. Sizable
lepton number violation would require the perturbations of the cancellation structure to
split the masses of the singlets forming the Dirac pair by an amount ∆M significantly
larger than their decay width. In this case, only one singlet would be produced on-shell
and dominate ALNV, resulting in a non-zero amplitude. If, for instance, p2 = M2

1 , then

ALNV =
1

iΓ1
Vα1Vβ1 +

M2

M2
1 − M2

2 + iM2Γ2
Vα2Vβ2 ≈

1

iΓ1
Vα1Vβ1 −

1

2∆M
Vα2Vβ2 . (55)

For example, the mass splitting caused by ε1 is roughly ∆M ≈ ε1M . Consequently, for
∆M ∼ 1 GeV ( Γi, we need ε1 ∼ 0.01 (again in the case M ∼ 100 GeV). This is still
a small perturbation but orders of magnitude above the bound (44), so that we cannot
avoid unacceptable active neutrino masses without fine-tuning. The parameter ε13 enters
the mass splitting quadratically and therefore has to be larger than ε1 to achieve the same
splitting ∆M ∼ 1 GeV, e.g. ε13 ∼ 0.3 for M ∼ 100 GeV and M3 ∼ 1 TeV. On the other
hand, the bound (45) is weaker than Eq. (44) and can be further relaxed if one allows
the one-loop correction to the neutrino masses to be of the same order of magnitude as
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Type-II Seesaw at Colliders
• SU(2) triplet Higgs contribute to neutrino mass

• Higgs spectrum after SSB: 7 massive physical higgs bosons

• Generic predictions: doubly charged Higgs

• only couple to leptons, not quarks

• unique signatures: different from SUSY scalar spectrum
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σ (fb) Basic p!
T cut pj

T cut MJ1
rec. MJ2

rec. MJJ

cuts Cuts > 80 GeV > 200 GeV MW ± 15 GeV MX ± 15 GeV 600± 75 GeV

WH 1.1 × 10−2 9.5 × 10−3 9.5 × 10−3 9.4 × 10−3 9.1 × 10−3 9.0 × 10−3

WZ 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2 9.9 × 10−3 9.8 × 10−3

H±±H∓∓ 3.3 × 10−2 3.2 × 10−2 3.1 × 10−2 3.1 × 10−2 3.1 × 10−2 3.1 × 10−2

JJW±W± 14.95 7. 65 4.69 0.24

(MH1
rec.→) 6 × 10−2 4.0 × 10−5

(MZ rec.→) 0.13 1.4 × 10−4

(MW rec.→) 0.1 1.6 × 10−4

TABLE V: Production cross sections (in fb) at the LHC for pp → H±±H∓ → W±W±W∓H1/W±W±W∓Z0 →

JJ + "±"± +!ET and pp → H++H−− → W+W+W−W− → JJ + "±"± +!ET , and for the leading backgrounds.

We take MH±± = MH± = 600 GeV for illustration. The rates after imposing each selection criterion, as described

in the text, are shown.

The cross section for jjW+W+ is below O(10 fb) after some basic acceptance cuts. The large jet mass

cut will further reduce them. The results of the signal and backgrounds are summarized in Table V for

MH±± = MH± = 600 GeV. We see once again that the cuts are very efficient in retaining the signal and

the background can be suppressed to a negligible level. The difficulty is the rather small signal rate to begin

with, at the order of 5 × 10−2 fb.

VII. DISCUSSIONS AND CONCLUSIONS

A. Discussion on Testing the Type II Seesaw Mechanism

We have discussed the general properties of the Type II seesaw mechanism for neutrino masses where

the Higgs sector of the Standard Model is extended by adding an SU(2)L Higgs triplet, ∆ ∼ (1, 3, 1).

As is well-known, in this scenario the neutrino mass matrix is given by Mν =
√

2 Yν v∆, where v∆ is

the vacuum expectation value (vev) of the neutral component of the triplet and Yν is the Yukawa coupling.

Once the electroweak symmetry is broken v∆ = µ v2
0/
√

2 M2
∆, where the dimension parameter µ defines

the doublet-triplet mixing andM∆ is the mass of the triplet. In the standard “high-scale” seesaw mechanism

assuming Yν ≈ 1 and µ ∼ M∆ ≈ 1014−15 GeV one obtains the natural value for neutrino masses mν ≈ 1

eV. However, even if it is a natural scenario in this case one cannot hope to realize the direct test of the

mechanism at future colliders. In this work we have focused on the possibility to observe at the LHC the

fields responsible for the Type II seesaw mechanism. In this case assuming M∆ ! 1 TeV one finds that
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and mixing consistent with the experimental observation.
For the purpose of illustration, we adopt the values of the
masses and mixing at 2σ level from a recent global fit [10].
For a complete discussion of these constraints see recent
reviews in [2].
II.A General Properties of the Higgs Sector
After the EWSB, there are seven massive physical Higgs
bosons in the spectrum: H1, H2, A, H±, and H±±,
where H1 is SM-like and the rest of the Higgs states
are ∆-like. Neglecting the Higgs quartic interactions one
finds MH2

! MA ! MH+ ! MH++ = M∆. Since we
are interested in a mass scale accessible at the LHC,
we thus focus on 110 GeV < M∆ < 1 TeV (The rel-
atively light scalar triplet can be adopted in a grand
unified theory [11].), where the lower bound is from the
direct searches for the doubly charged Higgs at the Teva-
tron [12]. Working in the physical basis for the fermions
we find that the ∆L = 2 Yukawa interactions can be
written as

νT
L C Γ+ H+ eL, and eT

L C Γ++ H++ eL, (3)

where C is the charge conjugation operator, and

Γ+ =
cθ+

mdiag
ν V †

PMNS

v∆

, Γ++ =
V ∗

PMNSmdiag
ν V †

PMNS√
2 v∆

,

cθ+
= cos θ+, with θ+ the mixing angle in the charged

Higgs sector, VPMNS = Vl(θ12, θ23, θ13, δ) × KM is the
leptonic mixing matrix and KM = diag(eiΦ1/2, 1, eiΦ2/2)
is the Majorana phase factor. The values of the physical
couplings Γ+ and Γ++ are thus governed by the spec-
trum and mixing angles of the neutrinos, and they in
turn characterize the branching fractions of the ∆L = 2
Higgs decays.

The two leading decay modes for the heavy Higgs
bosons are the ∆L = 2 leptonic mode and the gauge bo-
son pair mode. The ratio between them for the doubly
charged Higgs decay reads as

Γ(H++ → %+%+)

Γ(H++ → W+W+)
≈

|Γ++|2v4
0

M2
∆v2

∆

≈
(

mν

M∆

)2 (

v0

v∆

)4

,

using mν/M∆ ∼ 1 eV/1 TeV, one finds that these two
decay modes are comparable when v∆ ≈ 10−4 GeV. It is
thus clear that for a smaller value of v∆ (a larger Yukawa
coupling), the leptonic modes dominate the heavy Higgs
decays, while for larger values, the gauge boson modes
take over. In the case of the singly charged Higgs, H±,
there is one additional mode to a heavy quark pair. The
ratio between the relevant channels is

Γ(H+ → tb̄)

Γ(H+ → W+Z)
≈

3(v∆mt/v2
0)

2M∆

M3
∆v2

∆/2v4
0

= 6

(

mt

M∆

)2

.

Therefore, the decays H+ → W+Z, W+H1 dominate
over tb̄ for M∆ > 400 GeV. We present more detailed
discussions in [13].

FIG. 1: Leptonic branching fractions versus the lightest neu-
trino mass without the Majorana phases (a) for H++ decay
in the NH, and (b) for H+ in the IH.

In our discussions thus far, we have assumed the mass
degeneracy for the Higgs triplet. Even if there is no
tree-level mass difference, the SM gauge interactions gen-
erate the splitting of the masses via radiative correc-
tions at one-loop, leading to ∆M = MH++ − MH+ =
540 MeV [14]. The transitions between two heavy triplet
Higgs bosons via the SM gauge interactions, such as the
three-body decays H++ → H+W+∗, H+ → H0W+∗

may be sizable if kinematically accessible. We find [13]
that these transitions will not be important unless ∆M >
1 GeV. We will thus ignore these modes in the current
study.
II.B Higgs Decays and the Neutrino Properties
For v∆ < 10−4 GeV, the dominant channels for the
heavy Higgs boson decay are the ∆L = 2 di-leptons.
In Fig. 1 we show the predictions for the representa-
tive decay branching fractions (BR) to flavor diagonal
di-leptons versus the lightest neutrino mass. Figure 1(a)
is for the H++ decay to like-sign di-leptons in the Nor-
mal Hierarchy (NH) neutrino mass pattern (∆m2

31 > 0),
and Fig. 1(b) for the H+ decay in the Inverted Hierar-
chy (IH) neutrino mass pattern (∆m2

31 < 0). In accor-
dance with the NH spectrum, the leading channels are
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Type-II Seesaw at Colliders
• current limits on doubly charged Higgs:

• CDF, D0:  > 136 GeV

• HERA:      > 141 GeV

• muonium-anti-muonium oscillation (PSI):
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Type-II Seesaw at Collider

• doubly charged Higgs at the LHC:

• produced through Drell-Yan

Han, Mukhopadhyaya, Si, Wang, ‘07; 
Akeroyd, Aoki, Sugiyama, ‘08; 

Perez, Han, Huang, Li, Wang, ‘08; ...

3

TABLE I: Relations for the ∆L = 2 decays of H++, H+ in
three different neutrino mass patterns when Φ1 = Φ2 = 0.

Spectrum Relations

NH Br(τ+τ+), Br(µ+µ+) ! Br(e+e+)

∆m2
31 > 0 Br(µ+τ+) ! Br(e+τ+), Br(e+µ+)

Br(τ+ν̄), Br(µ+ν̄) ! Br(e+ν̄)

IH Br(e+e+) > Br(µ+µ+), Br(τ+τ+)

∆m2
31 < 0 Br(µ+τ+) ! Br(e+τ+), Br(e+µ+)

Br(e+ν̄) > Br(µ+ν̄), Br(τ+ν̄)

QD Br(e+e+) ≈ Br(µ+µ+) ≈ Br(τ+τ+)

Br(µ+τ+) ≈ Br(e+τ+) ≈ Br(e+µ+) (suppressed)

Br(e+ν̄) ≈ Br(µ+ν̄) ≈ Br(τ+ν̄)

H++ → τ+τ+, µ+µ+, and the channel e+e+ is much
smaller. When the spectrum is inverted, the dominant
channel is H++ → e+e+ instead. Also is seen in Fig. 1(b)
the H+ → e+ν̄ dominance in the IH. In both cases of
NH and IH, the off-diagonal channel H++ → τ+µ+ is
dominant due to the large atmosphere mixing angle. In
the limit of Quasi-Degenerated (QD) neutrinos one finds
that the three diagonal channels are quite similar, but
the off-diagonal channels are suppressed. The spread in
BR values is due to the current errors in the neutrino
masses and mixing.

The properties of all leptonic decays of the charged
Higgs bosons are summarized in Table. I. The effects of
the Mojarana phases are neglected so far. The Higgs de-
cays are not very sensitive to the phase Φ2, with a maxi-
mal reduction of H++ → τ+τ+, µ+µ+ and enhancement
of µ+τ+ up to a factor of two in the NH. The phase
Φ1, however, has a dramatic impact on the H++ de-
cay in the IH. This is shown in Fig. 2. We see that for
Φ1 ≈ π the dominant channels switch to e+µ+, e+τ+

from e+e+, µ+τ+ as in the zero phase limit. This pro-
vides the best hope to probe the Majorana phase. The
decay of H±, on the other hand, is independent of the
phases, leaving the BR predictions robust.

Recently, the possibilities to distinguish between the
different spectra by the Higgs decays have been investi-
gated [10, 15, 16, 17]. We agree [13] with their results
wherever it overlaps.
III. Testing the Model at the LHC

We consider the leading production channels for the
triplet Higgs bosons

qq̄ → γ∗, Z∗ → H++H−−, qq̄′ → W ∗ → H±±H∓. (4)

The total cross sections versus its mass at the LHC en-
ergy are shown in Fig. 3. The cross sections range in
100− 0.1 fb for a mass of 200−1000 GeV, leading to po-
tentially observable signal rates with a high luminosity of
300 fb−1. We emphasize that the existence of the asso-
ciated production H±±H∓ implies a non-singlet SU(2)L

interaction for H±±.

FIG. 2: Leptonic branching fractions of H++ decay versus
the Majorana phase Φ1 in the IH for m3 ≈ 0.

III.A Purely Leptonic Modes
For v∆ < 10−4 GeV, we wish to identify as many chan-
nels of leptonic flavor combination as possible to study
the neutrino mass pattern. The e’s and µ’s [18] are exper-
imentally easy to identify, while τ ’s can be identified via
their simple charged tracks (1-prong and 3-prongs). We
make use of the important feature that the τ ’s from the
heavy Higgs decays are highly relativistic and the miss-
ing neutrinos are collimated along the charged tracks, so
that the τ momentum p(τ) can be reconstructed effec-
tively. In fact, we can reconstruct up to three τ ’s if we
assume the Higgs pair production with equal masses [13].
The fully reconstructable signal events are thus

H++H−− → %+%+ %−%−, %±%± %∓τ∓, %±%± τ∓τ∓,

%+τ+ %−τ−, %±τ± τ∓τ∓,

H±±H∓ → %±%± %∓ν, %±%± τ∓ν,

where % = e, µ. We have performed the full kinemat-
ical reconstruction for those modes, including judicious
cuts to separate the backgrounds, the energy-momentum
smearing to simulate the detector effects, and the p(τ)
and M∆ reconstruction. We find our reconstruction
highly efficient, with about 50% for M∆ = 200 GeV and
even higher for a heavier mass. With a 300 fb−1 lumi-
nosity, there will still be several reconstructed events in
the leading channels up to M∆ ∼ 1 TeV with negligible
backgrounds.

We summarize the leading fully reconstructable lep-
tonic channels and their achievable branching fractions
in Table II. The specific flavor combinations are particu-
larly indicative for the neutrino mass patterns. The H±

decays prove to be robust in determining the mass pat-
tern since they are independent of the Majorana phases.
The H±± decays depend strongly on Φ1 in the IH, and
weakly on Φ2 in the NH. More detail results will be pre-
sented elsewhere [13].
III.B Gauge Boson and Heavy Quark Modes
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FIG. 24: Total production cross section at the LHC versus the heavy Higgs mass for (a) H±H2, H±±H∓ and

H++H−− processes in the triplet model (left), and (b)H++H−− andH+H− processes in the singlet model (right).

due to the absence of the SU(2)L gauge couplings. Drell-Yan production of H++H−− and H+H− will

be present via the hypercharge interaction of γ and Z .

The production cross sections for all three channels are plotted in Fig. 24(a) (H+H− is not presented

since it is phenomenologically less unique and we will not study it.) For comparison, we also plot the

production of H++H−− and H+H− in Zee-Babu model in Fig. 24(b). The production rate is lower by

about a factor of two comparing with the rates in the triplet model. Only tree-level results are shown

in these figures. The QCD corrections to the process H++H−− have also been computed [32], and a

next-to-leading (NLO) K-factor of order 1.25 at the LHC for Higgs mass range from 150 GeV to 1 TeV

is predicted. QCD corrections to the production of H±±H∓ and H±H2 are in principle very similar

to H++H−− and we apply the same K-factor to these two processes in our numerical analysis. In the

H++H−− production, contribution from real photon annihilation is shown [18] to be an increase of 10% to

the Drell-Yan production for the above mass range at the LHC. We will apply an overall K-factor of 1.35

for the H++H−− production, and 1.25 for the H++H− production.

A. Purely Leptonic Modes

The light neutrino mass matrix and the leptonic decay branching fractions of triplet Higgs bosons are

related by the structure of triplet Yukawa matrix Γ++ (or Yν). This direct correlation may enable us to test

Perez, Han, Huang, Li, Wang, ‘08; ...

For a mass ~ (200-1000) GeV:
   cross-section: 100-0.1 fb

potentially observable rate with 
high luminosity of 300 fb-1 for 
M∆ ~ 600 GeV



Type-II Seesaw at Colliders

• distinguishing NH vs IH mass spectra Perez, Han, Huang, Li, Wang, ‘08

3

TABLE I: Relations for the ∆L = 2 decays of H++, H+ in
three different neutrino mass patterns when Φ1 = Φ2 = 0.

Spectrum Relations

NH Br(τ+τ+), Br(µ+µ+) ! Br(e+e+)

∆m2
31 > 0 Br(µ+τ+) ! Br(e+τ+), Br(e+µ+)

Br(τ+ν̄), Br(µ+ν̄) ! Br(e+ν̄)

IH Br(e+e+) > Br(µ+µ+), Br(τ+τ+)

∆m2
31 < 0 Br(µ+τ+) ! Br(e+τ+), Br(e+µ+)

Br(e+ν̄) > Br(µ+ν̄), Br(τ+ν̄)

QD Br(e+e+) ≈ Br(µ+µ+) ≈ Br(τ+τ+)

Br(µ+τ+) ≈ Br(e+τ+) ≈ Br(e+µ+) (suppressed)

Br(e+ν̄) ≈ Br(µ+ν̄) ≈ Br(τ+ν̄)

H++ → τ+τ+, µ+µ+, and the channel e+e+ is much
smaller. When the spectrum is inverted, the dominant
channel is H++ → e+e+ instead. Also is seen in Fig. 1(b)
the H+ → e+ν̄ dominance in the IH. In both cases of
NH and IH, the off-diagonal channel H++ → τ+µ+ is
dominant due to the large atmosphere mixing angle. In
the limit of Quasi-Degenerated (QD) neutrinos one finds
that the three diagonal channels are quite similar, but
the off-diagonal channels are suppressed. The spread in
BR values is due to the current errors in the neutrino
masses and mixing.

The properties of all leptonic decays of the charged
Higgs bosons are summarized in Table. I. The effects of
the Mojarana phases are neglected so far. The Higgs de-
cays are not very sensitive to the phase Φ2, with a maxi-
mal reduction of H++ → τ+τ+, µ+µ+ and enhancement
of µ+τ+ up to a factor of two in the NH. The phase
Φ1, however, has a dramatic impact on the H++ de-
cay in the IH. This is shown in Fig. 2. We see that for
Φ1 ≈ π the dominant channels switch to e+µ+, e+τ+

from e+e+, µ+τ+ as in the zero phase limit. This pro-
vides the best hope to probe the Majorana phase. The
decay of H±, on the other hand, is independent of the
phases, leaving the BR predictions robust.

Recently, the possibilities to distinguish between the
different spectra by the Higgs decays have been investi-
gated [10, 15, 16, 17]. We agree [13] with their results
wherever it overlaps.
III. Testing the Model at the LHC

We consider the leading production channels for the
triplet Higgs bosons

qq̄ → γ∗, Z∗ → H++H−−, qq̄′ → W ∗ → H±±H∓. (4)

The total cross sections versus its mass at the LHC en-
ergy are shown in Fig. 3. The cross sections range in
100− 0.1 fb for a mass of 200−1000 GeV, leading to po-
tentially observable signal rates with a high luminosity of
300 fb−1. We emphasize that the existence of the asso-
ciated production H±±H∓ implies a non-singlet SU(2)L

interaction for H±±.

FIG. 2: Leptonic branching fractions of H++ decay versus
the Majorana phase Φ1 in the IH for m3 ≈ 0.

III.A Purely Leptonic Modes
For v∆ < 10−4 GeV, we wish to identify as many chan-
nels of leptonic flavor combination as possible to study
the neutrino mass pattern. The e’s and µ’s [18] are exper-
imentally easy to identify, while τ ’s can be identified via
their simple charged tracks (1-prong and 3-prongs). We
make use of the important feature that the τ ’s from the
heavy Higgs decays are highly relativistic and the miss-
ing neutrinos are collimated along the charged tracks, so
that the τ momentum p(τ) can be reconstructed effec-
tively. In fact, we can reconstruct up to three τ ’s if we
assume the Higgs pair production with equal masses [13].
The fully reconstructable signal events are thus

H++H−− → %+%+ %−%−, %±%± %∓τ∓, %±%± τ∓τ∓,

%+τ+ %−τ−, %±τ± τ∓τ∓,

H±±H∓ → %±%± %∓ν, %±%± τ∓ν,

where % = e, µ. We have performed the full kinemat-
ical reconstruction for those modes, including judicious
cuts to separate the backgrounds, the energy-momentum
smearing to simulate the detector effects, and the p(τ)
and M∆ reconstruction. We find our reconstruction
highly efficient, with about 50% for M∆ = 200 GeV and
even higher for a heavier mass. With a 300 fb−1 lumi-
nosity, there will still be several reconstructed events in
the leading channels up to M∆ ∼ 1 TeV with negligible
backgrounds.

We summarize the leading fully reconstructable lep-
tonic channels and their achievable branching fractions
in Table II. The specific flavor combinations are particu-
larly indicative for the neutrino mass patterns. The H±

decays prove to be robust in determining the mass pat-
tern since they are independent of the Majorana phases.
The H±± decays depend strongly on Φ1 in the IH, and
weakly on Φ2 in the NH. More detail results will be pre-
sented elsewhere [13].
III.B Gauge Boson and Heavy Quark Modes

17

FIG. 13: Scatter plots for the H++ decay branching fractions to the flavor-diagonal like-sign dileptons versus the

lowest neutrino mass for NH (left) and IH (right) with Φ1 = Φ2 = 0.

FIG. 14: Same as Fig. 13, but forH++ decay to the flavor-off-diagonal like-sign dileptons.

values will be known to a better precision one can improve our predictions for the lepton number violating

Higgs decays.

The total decay width of H++ depends on the neutrino and Higgs triplet parameters. In terms of v∆,

the minimal width or the maximal decay length occur near the cross-over between WW -dominant and !!-

dominant regions near 10−4 GeV. As seen in Fig. 15, the proper decay length can be as large as cτ >∼ 10 µm.



TeV Seesaw with New Interactions 

• new gauge interactions RH neutrinos participate: 

• seesaw mechanism may be tested even for small heavy-light 
mixing

• an example is the left-right SU(2)L x SU(2)R symmetric model

• particle content

• fermions:

• scalars:

• upon LR symmetry breaking: neutrino masses generated

• type-I + type-II contribution
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1.4.2. Models with Spontaneous CP Violation (& Triplet
Leptogenesis)

The second type of models in which relation between leptogenesis and low
energy CP violation exists is the minimal left-right symmetric model with
spontaneous CP violation (SCPV) [54]. The left-right (LR) model [55] is
based on the gauge group, SU(3)c×SU(2)L×SU(2)R×U(1)B−L×P , where
the parity P acts on the two SU(2)’s. (See also Kaladi Babu’s lectures.)
In this model, the electric charge Q can be understood as the sum of the
two T 3 quantum numbers of the SU(2) gauge groups,

Q = T3,L + T3,R +
1

2
(B − L) . (1.158)

The minimal LR model has the following particle content: In the fermion
sector, the iso-singlet quarks form a doublet under SU(2)R, and similarly
for eR and νR,

Qi,L =

(
u
d

)

i,L

∼ (1/2, 0, 1/3), Qi,R =

(
u
d

)

i,R

∼ (0, 1/2, 1/3)

Li,L =

(
e
ν

)

i,L

∼ (1/2, 0,−1), Li,R =

(
e
ν

)

i,R

∼ (0, 1/2,−1) .

In the scalar sector, there is a bi-doublet and one triplet for each of the
SU(2)’s,

Φ =

(
φ0

1 φ+
2

φ−
1 φ0

2

)
∼ (1/2, 1/2, 0)

∆L =

(
∆+

L/
√

2 ∆++
L

∆0
L −∆+

L/
√

2

)
∼ (1, 0, 2)

∆R =

(
∆+

R/
√

2 ∆++
R

∆0
R −∆+

R/
√

2

)
∼ (0, 1, 2) .

Under the parity P , these fields transform as,

ΨL ↔ ΨR, ∆L ↔ ∆R, Φ ↔ Φ† . (1.159)

The VEV of the SU(2)R breaks the left-right symmetry down to the SM
gauge group,

SU(3)c × SU(2)L × SU(2)R × U(1)B−L × P

→ SU(3)c × SU(2)L × U(1)Y , (1.160)
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Pati, Salam, 74; Mohapatra, Pati, 75; 
Mohapatra, Senjanovic, 75



Left-Right Model

• Left-right Model attractive:

• Parity restoration

• solution to the strong CP problem

• if CP broken spontaneously through complex VEV, connection 
between leptogenesis and low energy leptonic CPV processes 
(neutrino oscillation, neutrinoless double decay, ...) possible 

M-CC & Mahanthappa, 05

Pati, Salam, 74; Mohapatra, Pati, 75; 
Mohapatra, Senjanovic, 75



Left-Right Model

• TeV scale LR model:
• neutrino mass

• preferred SUSY vacuum: preserved R-parity, break P

• small neutrino mass with TeV WR and Yukawa y ~ 10-6 

• WR & Z’ at LHC
• production independent of light-heavy mixing

• signal: 

• very small background

• current limit from D0 & CDF: MWR > 780 GeV

• LHC can easily probe WR up to (3-4) TeV and νR in 
(100-1000) GeV range
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G. Senjanović

Neutrino 08-Christchurch 17

Keung, Senjanovic, ‘83
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1

Azuleos et al 06; del Aguila et al 07, Han et al 07; Chao, Luo, Xing, Zhou, ‘08; ...



Left-Right Model

• High Scale SUSY Left-right Model 

• MR ~ 10 11 - 1012 GeV

• if SUSY broken by Anomaly Mediation

• TeV scale triplet Higgs to avoid electric charge non-
conservation

Mohapatra, Okada,Yu, 07
Setzer, Spinner, Mohapatra, 08



TeV Scale Seesaw with U(1)NA

• gauge symmetry SM x non-anomalous U(1)ν   +  N   νR  

• SM particles &  νR :   all charged under U(1)

• U(1) forbids dim-4, dim-5 operators
• To get 

• non-anomalous U(1)ν
• anomaly cancellation conditions ⇒ constraints on U(1) charges

• generation dependent charges ⇒ U(1) flavor symmetry
                                             ⇒ mixing pattern & mass hierarchy (FN)

• TeV cutoff possible with 3 RH neutrinos
• light sterile neutrinos: DM candidate
• TeV scale Z’: probing flavor sector at colliders
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Fig. 3. Schematic diagrams for Froggatt-Nielsen mechanism. Here a and b are the family indices.
(χ, χ) are the vector-like Froggatt-Nielsen fields. Figure (a): The tree level diagram generating
the mass of the third family is given; (b): The mass of the lighter matter fields generated by this
diagram is ∼ O((<θ>

M
)2); (c): Higher order diagrams generate mass ∼ O((<θ>

M
)n).

lighter matter fields are produced by higher dimensional interactions involving, in
addition to the regular Higgs fields, exotic vector-like pairs of matter fields and the
so-called flavons (flavor Higgs fields). Schematic diagrams for these interactions are
shown in Fig.3. After integrating out superheavy vector-like matter fields of mass
M , the mass terms of the light matter fields get suppressed by a factor of <θ>

M ,
where < θ > is the VEVs of the flavons and M is the UV-cutoff of the effective
theory above which the flavor symmetry is exact. When the family symmetry is
exact, only the (33) entry is non-zero. When the family symmetry is spontaneously
broken, the zero entries will be filled in at some order O(<θ>

M ). Suppose the family
symmetry allows only the (23) and (32) elements at order O(<θ>

M ),




0 0 0
0 0 0
0 0 1



 SSB

−→




0 0 0
0 0 <θ>

M

0 <θ>
M 1



 . (15)

Then a second fermion mass is generated at order O((<θ>
M )2) after the family

symmetry is spontaneous broken. The fermion mass hierarchy thus arises.
To illustrate how the Froggatt-Nielsen mechanism works, suppose there is a

vector-like pair of matter fields (χ⊕χ) with mass M and carrying the same quantum
numbers as ψR under the vertical gauge group (e.g. SM or SO(10)), but different
quantum numbers under the family symmetry. It is therefore possible to have a
Yukawa coupling yχψLH where H is the SM doublet Higgs if the family symmetry
permits such a coupling. In addition, there is a gauge singlet θ which transforms
non-trivially under the family symmetry. Suppose the coupling y

′

ψRχθ is allowed
by the family symmetry, we then obtain the following seesaw mass matrix, upon H
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Non-anomalous v.s. Anomalous U(1)

• anomaly cancellations:  relating charges of different fermions

• [U(1)]3 condition generally difficult to solve 

• most models utilized anomalous U(1): 

• mixed anomaly: cancelled by Green-Schwarz mechanism

• [U(1)]3 anomaly: cancelled by exotic fields besides RH neutrinos

• U(1) broken at fundamental string scale

• earlier claim that U(1) has to be anomalous to be compatible with 
SU(5) while giving rise to realistic fermion mass and mixing 
patterns 

• non-anomalous U(1) can be compatible with SUSY SU(5) while giving 
rise to realistic fermion mass and mixing patterns

• no exotics other than 3 RH neutrinos

• U(1) also forbids Higgs-mediated proton decay

M.-C.C,  D.R.T. Jones,  A. Rajaraman,  H.B. Yu,  2008

Gauge anomaly

From Wikipedia, the free encyclopedia

In theoretical physics, a gauge anomaly is an example of an anomaly: it is an effect of quantum mechanics—

usually a one-loop diagram—that invalidates the gauge symmetry of a quantum field theory; i.e. of a gauge

theory.

Anomalies in gauge symmetries lead to an inconsistency, since a gauge symmetry is required in order to

cancel unphysical degrees of freedom with a negative norm (such as a photon polarized in the time direction).

Therefore all gauge anomalies must cancel out. This indeed happens in the Standard Model.

The term gauge anomaly is usually used for vector gauge anomalies. Another type of gauge anomaly is the

gravitational anomaly, because reparametrization is a gauge symmetry in gravitation.

Calculation of the anomaly

In vector gauge anomalies (in gauge symmetries whose gauge boson is a vector), the anomaly is a chiral

anomaly, and can be calculated exactly at one loop level, via a Feynman diagram with a chiral fermion

running in the loop (a polygon) with n external gauge bosons attached to the loop where n = 1 + D / 2 where

D is the spacetime dimension. Anomalies occur only in even spacetime dimensions. For example, the

anomalies in the usual 4 spacetime dimensions arise from triangle Feynman diagrams.

Let us look at the (semi)effective action we get after integrating over the chiral fermions. If there is a gauge

anomaly, the resulting action will not be gauge invariant. If we denote by !" the operator corresponding to an

infinitesimal gauge transformation by ", then the Frobenius consistency condition requires that

for any functional , including the (semi)effective action S where [,] is the Lie bracket. As !"S is linear in ",

we can write

where #(4) is d-form as a functional of the nonintegrated fields and is linear in ". Let us make the further

assumption (which turns out to be valid in all the cases of interest) that this functional is local (i.e. #(d)(x) only

depends upon the values of the fields and their derivatives at x) and that it can be expressed as the exterior

product of p-forms. If the spacetime Md is closed (i.e. without boundary) and oriented, then it is the boundary

of some d+1 dimensional oriented manifold Md+1. If we then arbitrarily extend the fields (including ") as

defined on Md to Md+1 with the only condition being they match on the boundaries and the expression #(d),

being the exterior product of p-forms, can be extended and defined in the interior, then

Make a donation to Wikipedia and give the gift of knowledge!

L.E. Ibanez, G.G. Ross  1994

constraints not 
as stringent



TeV Scale Seesaw

• “Leptocratic model” with 3 νR:  N1, N2, N3

❖ “Orwellian Leptocratic” model:
‣ all U(1)NA charges for SM fermions are generation independent: 

no charged lepton flavor violating FCNC mediated by Z’ at tree 
level

‣ Q(N2) = Q(N3) ≠ Q(N1) 
‣ bi-large mixing through anarchy
‣ three active neutrinos: can either be Dirac or Majorana fermions
‣ three light sterile neutrinos:  two heavy ones (1keV ~ 1MeV) & 

one ultra light (10-9 eV)
‣ active-sterile neutrino mixing:  < 10-3

❖ “2+1 leptocratic”: allowed lepton doublets to have generation 
dependent U(1)NA  charges

‣ bi-large mixing from U(1)NA

M.-C.C,  A. de Gouvea, B. Dobrescu, 2006



TeV Scale Seesaw

• probing the flavor sector at the colliders

• (2+1) leptocratic models

• invisible decays of Z’: distinguish different U(1)

• U(1)B-L: B(Z’ → invisible) = 3/8

• Orwellian Z’:  B(Z’ → invisible) = 6/7
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equilibrium by Z ′ exchange, we can readily estimate that
they ought to decouple at T = Td, given roughly by

T 2
d

MPl
∼

T 5
d

4π〈φ〉4
, (V.10)

if the Z ′ mass is much larger than Td. Hence, ster-
ile neutrinos contribute to the expansion rate at the
time of BBN like (10.75/g∗(Td))4/3 equivalent neutrinos.
For Td values above the QCD phase-transition (around
180 MeV), g∗ ! 60, so that each sterile state contributes
like 0.1 neutrinos (or less) and is easily allowed by the
data. Td ! 180 MeV translates into 〈φ〉 ! 5 TeV.

For smaller U(1)ν breaking scales there are several
ways out. Modest modifications to the concordance cos-
mological model allow for more relativistic degrees of
freedom at the time of BBN, including allowing for a
large lepton asymmetry among the active leptons. The
authors of [35], for example, find that up to four massless
neutrinos can be added to the primordial universe as long
as the electron neutrino chemical potential is ξe ∼ 0.2.

Heavier sterile neutrinos (m ! 1 eV) must also satisfy
constraints on the amount of matter (hot or cold) in the
universe. If the sterile neutrinos decouple while relativis-
tic (mνs

" 100 MeV for 〈φ〉 ! 5 TeV), their contribution
to the critical density is estimated to be

Ωνs
∼ 0.2

( mνs

100 eV

)

. (V.11)

Hence, mostly right-handed states with masses above
100 eV would overclose the universe. A 100 eV sterile
neutrino would behave as hot dark matter, whose con-
tribution to the energy budget of the universe is cur-
rently constrained to be much less than the estimate
above. On the other hand, we estimate that much heav-
ier sterile states (m ! 100 MeV) will decouple while non-
relativistic, and serve as good dark matter candidates if
their masses are above tens of GeV, and otherwise over-
close the universe.

In summary, very light quasi-sterile neutrinos (m "
10 eV) are in agreement with early universe data if
〈φ〉 ! 5 TeV, even if we do not appeal to non-standard
cosmology. Smaller 〈φ〉 are easily allowed if one adds
new ingredients to the early universe, like a large lep-
ton asymmetry. Heavier mostly sterile states (10 eV "
m " 10 GeV) either populate the universe with too much
hot dark matter or too much matter (Ωνs

$ 1). These
constraints can be circumvented in a variety of ways, in-
cluding adding new sterile neutrino interactions that will
keep the heavy states in thermal equilibrium until lower
temperatures, or postulating a low reheating tempera-
ture (Treheat " 100 MeV, easily allowed by current data
[36], should suffice).

VI. COLLIDER PROBES OF NEUTRINO MASS
GENERATION

If the U(1)ν gauge symmetry which controls the
higher-dimensional operators responsible for generating

field U(1)ν charge

qL, uR, dR
1
3

!1L, e1

R −1 − 2azφ

!2L, !3L, e2

R, e3

R −1 + azφ

n1
R −1 − 2bzφ

n2
R, n3

R −1 + bzφ

H 0

φ zφ = −
3(a + b)

a2 + ab + b2

TABLE II: The two-parameter family of U(1)ν charges in the
2+1 Leptocratic Model (a′ = b′ = 0) with the additional
constraint of zH = 0. The Orwellian Leptocratic Model with
zH = 0 is recovered for a = 0.

neutrino masses is spontaneously broken at or below the
TeV scale, then the associated Z ′ gauge boson is likely to
produce observable effects at high-energy colliders. Here
we discuss the case where the gauge coupling is not much
smaller than unity, so that the Z ′ boson may be produced
copiously at the LHC [38]. Furthermore, we assume that
the Z ′ mass is below 1 TeV so that it can show up as a
resonance at the ILC.

For nonzero values of the U(1)ν charge of the Higgs
doublet, there is tree-level mixing between the Z and Z ′

bosons, which is tightly constrained by the LEPI data
(see Fig. 1 of Ref. [13]). We will thus consider only the
zH = 0 case. In Secs. III and IV we have studied sev-
eral U(1)ν charge assignments. The most general one
consistent with neutrino mass generation at the TeV-
scale is that of the 2+1 Leptocratic Model (note that
the Orwellian Leptocratic Model is a particular case with
a = 0). Imposing the additional condition of zH = 0 we
find

c = 6zq , (VI.12)

so that all U(1)ν charges are given in terms of only two
rational parameters, a and b. It is convenient to normal-
ize the gauge coupling such that the quarks have U(1)ν

charge +1/3. The other U(1)ν charges are listed in Table
II.

In the event of a Z ′ discovery in dilepton channels at
the LHC or the Tevatron, it would be straightforward
to measure the ratio of branching fractions into e+e−

and µ+µ−. Unlike the majority of models studied in the
literature, the 2+1 Leptocratic Model with a %= 0 predicts
a value for this ratio different than unity:

B (Z ′ → e+e−)

B (Z ′ → µ+µ−)
=

(

1 + 2azφ

1 − azφ

)2

, (VI.13)
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where the charge of the scalar field φ is given by

zφ = −
3(a + b)

a2 + ab + b2
. (VI.14)

Measuring this ratio would allow the extraction of the azφ

combination of parameters. If furthermore a resonance of
the same invariant mass is discovered in the tt channel at
the LHC or the Tevatron, then it will be straightforward
to test the 2+1 Leptocratic Model which predicts

B (Z ′ → e+e−)

B
(

Z ′ → tt
) = 3 (1 + 2azφ)2 . (VI.15)

Let us assume now that a resonance will be discovered
in dilepton channels, and that the ratio of branching frac-
tions into e+e− and µ+µ− turns out to be equal to one
within experimental errors. The Orwellian Leptocratic
Model (a = 0) will be favored over the more general 2+1
Leptocratic Model. The question is how to establish that
the resonance is indeed associated with our U(1)ν and
not some other extension of the standard model. Let us
assume that the ATLAS and CMS experiments at the
LHC will be able to determine precisely several proper-
ties of the Z ′ boson by measuring total rates, angular
distributions, and other observables in the e+e−, µ+µ−,
tt and perhaps a couple of other channels, such that all
the results are consistent with the Orwellian Leptocratic
Model. Will that be enough evidence that the neutrino
masses are generated at the TeV scale rather than some
very high seesaw scale? The answer is no, because in the
Orwellian Leptocratic Model all standard model fermions
have charges given by their B − L number if zH = 0. It
turns out that extending the electroweak gauge group to
SU(2)L × U(1)Y × U(1)B−L is a natural possibility for
TeV scale physics which does not lead to an explanation
for the smallness of the neutrino masses. The only way
to distinguish experimentally between the Z ′ from the
Orwellian Leptocratic Model and the ZB−L boson associ-
ated with the U(1)B−L gauge symmetry is by measuring
the branching fraction for invisible decays.

In the Orwellian Leptocratic Model we find

B (Z ′ → invisible ) =
6

7
, (VI.16)

where we ignored the top mass, and assumed that the
decay into the CP-even component of the φ scalar is
kinematically forbidden. This large invisible branching
fraction is a consequence of the large charges of the right-
handed neutrinos: zn1

= 5 and zn2
= zn3

= −4 in the
normalization where the quarks have charge 1/3 and the
leptons have charge −1. The branching fraction for in-
visible decays of the ZB−L boson is significantly smaller,
given by 6/16.

A measurement of the invisible decay of a Z ′ boson at
the LHC would be extremely hard. For triggering pur-
poses, the Z ′ would have to be produced in association
with some other particles, which would render the sig-
nal rates small. At the same time, the backgrounds are

likely to be large. The best hope for measuring the invis-
ible decay of a Z ′ boson is provided by the ILC, where
the total production cross section is well known [37], and
the backgrounds will be under control.

The scalar sector responsible for U(1)ν breaking may
also be accessible at colliders. Assuming that a single φ
scalar is charged under U(1)ν , its CP-even degree of free-
dom may be produced in association with the Z ′ boson.
Based on the structure of the operators responsible for
neutrino masses, its main decay mode would be into neu-
trinos. A more interesting channel, albeit with a phase-
space suppressed branching fraction, is into a charged
lepton, a longitudinal W boson and a sterile neutrino.
We point out, though, that besides the operators respon-
sible for neutrino masses, other higher-dimensional op-
erators may lead to large branching fractions of the φ
scalar into quarks and charged leptons, and possibly into
standard model Higgs bosons. For example, the gauge-
invariant dimension-six operator

1

Λ2
φ†φ (tL, bL)H̃tR (VI.17)

may lead to a dominant φ decay into top quarks. Hence,
the phenomenology of the U(1)ν -breaking sector is more
model-dependent than that of the Z ′ boson. An inter-
esting possibility is to check whether there are more φ
scalars coupled to the Z ′, which would further test the
operators responsible for neutrino masses.

VII. SUMMARY AND CONCLUSIONS

The most popular explanation for tiny neutrino masses
is to postulate that lepton number is a symmetry of the
standard model that is broken at an energy scale Λ, close
to the grand unification scale. Besides suppressing the
neutrino masses by v/Λ, the high energy versions of the
seesaw mechanism provide all necessary ingredients to
explain the matter-antimatter asymmetry of the universe
[39]. On the more sobering side, a very high energy origin
for neutrino masses cannot be verified experimentally;
one can at most envision accumulating indirect evidence
for the physics behind neutrinos masses [40].

Here, we have pursued a different approach. We in-
vestigated the generation of neutrino masses in a non-
anomalous U(1)ν-extended standard model. Its parti-
cle content includes N right-handed neutrinos, which are
neutral under SU(3)c × SU(2)L × U(1)Y , but have non-
trivial charges under the U(1)ν symmetry. Right-handed
neutrinos allow for non-trivial, non-anomalous extensions
of the gauge sector, while the U(1)ν provides a natu-
ral mechanism for generating small neutrino masses that
does not necessarily rely on physics at energy scales sig-
nificantly above the electroweak scale. Generically, U(1)ν

gauge invariance forbids the usual neutrino mass terms,
and these are generated only through operators of high
mass dimension which include scalar fields associated to
the U(1)ν breaking scale 〈φ〉. Hence, neutrinos are light
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equilibrium by Z ′ exchange, we can readily estimate that
they ought to decouple at T = Td, given roughly by

T 2
d

MPl
∼

T 5
d

4π〈φ〉4
, (V.10)

if the Z ′ mass is much larger than Td. Hence, ster-
ile neutrinos contribute to the expansion rate at the
time of BBN like (10.75/g∗(Td))4/3 equivalent neutrinos.
For Td values above the QCD phase-transition (around
180 MeV), g∗ ! 60, so that each sterile state contributes
like 0.1 neutrinos (or less) and is easily allowed by the
data. Td ! 180 MeV translates into 〈φ〉 ! 5 TeV.

For smaller U(1)ν breaking scales there are several
ways out. Modest modifications to the concordance cos-
mological model allow for more relativistic degrees of
freedom at the time of BBN, including allowing for a
large lepton asymmetry among the active leptons. The
authors of [35], for example, find that up to four massless
neutrinos can be added to the primordial universe as long
as the electron neutrino chemical potential is ξe ∼ 0.2.

Heavier sterile neutrinos (m ! 1 eV) must also satisfy
constraints on the amount of matter (hot or cold) in the
universe. If the sterile neutrinos decouple while relativis-
tic (mνs

" 100 MeV for 〈φ〉 ! 5 TeV), their contribution
to the critical density is estimated to be

Ωνs
∼ 0.2

( mνs

100 eV

)

. (V.11)

Hence, mostly right-handed states with masses above
100 eV would overclose the universe. A 100 eV sterile
neutrino would behave as hot dark matter, whose con-
tribution to the energy budget of the universe is cur-
rently constrained to be much less than the estimate
above. On the other hand, we estimate that much heav-
ier sterile states (m ! 100 MeV) will decouple while non-
relativistic, and serve as good dark matter candidates if
their masses are above tens of GeV, and otherwise over-
close the universe.

In summary, very light quasi-sterile neutrinos (m "
10 eV) are in agreement with early universe data if
〈φ〉 ! 5 TeV, even if we do not appeal to non-standard
cosmology. Smaller 〈φ〉 are easily allowed if one adds
new ingredients to the early universe, like a large lep-
ton asymmetry. Heavier mostly sterile states (10 eV "
m " 10 GeV) either populate the universe with too much
hot dark matter or too much matter (Ωνs

$ 1). These
constraints can be circumvented in a variety of ways, in-
cluding adding new sterile neutrino interactions that will
keep the heavy states in thermal equilibrium until lower
temperatures, or postulating a low reheating tempera-
ture (Treheat " 100 MeV, easily allowed by current data
[36], should suffice).

VI. COLLIDER PROBES OF NEUTRINO MASS
GENERATION

If the U(1)ν gauge symmetry which controls the
higher-dimensional operators responsible for generating

field U(1)ν charge

qL, uR, dR
1
3

!1L, e1

R −1 − 2azφ

!2L, !3L, e2

R, e3

R −1 + azφ

n1
R −1 − 2bzφ

n2
R, n3

R −1 + bzφ

H 0

φ zφ = −
3(a + b)

a2 + ab + b2

TABLE II: The two-parameter family of U(1)ν charges in the
2+1 Leptocratic Model (a′ = b′ = 0) with the additional
constraint of zH = 0. The Orwellian Leptocratic Model with
zH = 0 is recovered for a = 0.

neutrino masses is spontaneously broken at or below the
TeV scale, then the associated Z ′ gauge boson is likely to
produce observable effects at high-energy colliders. Here
we discuss the case where the gauge coupling is not much
smaller than unity, so that the Z ′ boson may be produced
copiously at the LHC [38]. Furthermore, we assume that
the Z ′ mass is below 1 TeV so that it can show up as a
resonance at the ILC.

For nonzero values of the U(1)ν charge of the Higgs
doublet, there is tree-level mixing between the Z and Z ′

bosons, which is tightly constrained by the LEPI data
(see Fig. 1 of Ref. [13]). We will thus consider only the
zH = 0 case. In Secs. III and IV we have studied sev-
eral U(1)ν charge assignments. The most general one
consistent with neutrino mass generation at the TeV-
scale is that of the 2+1 Leptocratic Model (note that
the Orwellian Leptocratic Model is a particular case with
a = 0). Imposing the additional condition of zH = 0 we
find

c = 6zq , (VI.12)

so that all U(1)ν charges are given in terms of only two
rational parameters, a and b. It is convenient to normal-
ize the gauge coupling such that the quarks have U(1)ν

charge +1/3. The other U(1)ν charges are listed in Table
II.

In the event of a Z ′ discovery in dilepton channels at
the LHC or the Tevatron, it would be straightforward
to measure the ratio of branching fractions into e+e−

and µ+µ−. Unlike the majority of models studied in the
literature, the 2+1 Leptocratic Model with a %= 0 predicts
a value for this ratio different than unity:

B (Z ′ → e+e−)

B (Z ′ → µ+µ−)
=

(

1 + 2azφ

1 − azφ

)2

, (VI.13)
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Conclusion
• conventional GUT scale seesaw:

• can be tested through LFV searches

• LHC useful for tau decays

• TeV scale seesaw without new interactions

• type-I seesaw: 

• cancellation required

• LNV processes ~ small perturbation that generate small 
neutrino mass ⇒ decouple from collider physics

• type-II seesaw:

• TeV doubly charged Higgs⇔small couplings (unnatural?)

• unique signature:

• doubly charged Higgs produced through gauge interaction 
(independent of light-heavy mixing)

• 300 fb-1 for M∆ ~ 600 GeV

mν != 0

yD, mν → 0

MR ∼ 100 GeV

mD ∼ me ∼ 10−4 GeV

∝ V =
mD

MR
∼ 10−4 GeV

100 GeV
= 10−6

V > 0.01

V < 0.1

qq → !+α !−β + jets (α != β)

y∆LL

∆++ → e+e−, µ+µ−, τ+τ−

1



Conclusion
• TeV Scale Seesaw with new interactions

• SUSY Left-right model:

• TeV scale WR ⇔ small Yukawa

• tested via searches for WR 

• production independent of light-heavy mixing

• LHC: WR  up to (3-4) TeV , νR in (100-1000) GeV range

• U(1)NA model:

• TeV cutoff naturally arise

• anomaly cancellations: constraints on charges, predict flavor 
structure

• TeV scale seesaw possible for 3 RH neutrinos

• measuring Z’ decay: can probe the flavor sector at colliders


