Origin of the Neutrino Mass and the LHC

Mu-Chun Chen, University of California - Irvine

TeVPA 08, IHEP Beijing, September 25, 2008

Neutrino Mass beyond the SM

- SM: effective low energy theory with non-renormalizable terms
- new physics effects suppressed by powers of small parameter $\frac{M_W}{M}$
- neutrino masses generated by dim-5 operators

 $\frac{\lambda_{ij}}{M} HHL_iL_j \implies m_{\nu} = \lambda_{ij} \frac{v^2}{M}$ $\lambda_{ij} \text{ are dimensionless couplings; } M \text{ is some high scale}$ • m_{ν} small: non-renormalizable terms (M is high)

lowest higher dimensional operator that probes new physics

- total lepton number and family lepton numbers broken
 - ➡ lepton mixing and CP violation expected
 - $\implies \mu \rightarrow e \gamma$; $\tau \rightarrow \mu \gamma$; $\tau \rightarrow e \gamma$ decays; μ -e conversion
 - neutrinos are Majorana fermions

Parameters for 3 Light Neutrinos

• three neutrino mixing $\nu_{\ell L} = \sum_{k=1}^{3}$

$$\nu_{\ell L} = \sum_{j=1}^{3} U_{\ell j} \nu_{j L} \quad \ell = e, \ \mu, \ \tau$$

• mismatch between weak and mass eigenstates

$$\mathcal{L}_{cc} = (\ \overline{\nu}_1, \ \overline{\nu}_2, \ \overline{\nu}_3 \) \gamma^{\mu} U^{\dagger} \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix} W^{+}_{\mu} \qquad \stackrel{e \longrightarrow v_e}{\underset{w \longrightarrow v_\tau}{\overset{v_e}{\tau}} \qquad \nu_{1, 2, 3} \to m_{1, 2, 3}$$

• PMNS matrix

$$U = V \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{pmatrix} \qquad V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$atm \qquad reactor \qquad solar$$

- Dirac CP-violating phase: $\delta = [0, 2\pi]$
- Majorana CP-violating phases: α_{21} , α_{31}

Compelling Neutrino Oscillation Evidences

Atmospheric Neutrinos:

SuperKamiokande (up-down asymmetry, L/E, θ z dependence of µ-like events) dominant channel: $\nu_{\mu} \rightarrow \nu_{\tau}$ next: K2K, MINOS, CNGS (OPERA)

Solar Neutrinos:

Homestake, Kamiomande, SAGE, GALLEX/GNO, SK, SNO, BOREXINO, KamLAND

dominant channel: $\nu_e \rightarrow \nu_{\mu,\tau}$

next: BOREXINO, KamLAND, ...

LSND:

dominant channel: $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$

MiniBOONE -- negative result (2007)

Current Status of Oscillation Parameters

- oscillation probability: $P(\nu_a \to \nu_b) = |\langle \nu_b | \nu, t \rangle|^2 \simeq \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$
- 3 neutrinos global analysis: [solar+KamLAND+CHOOZ+atmospheric +K2K+Minos]
 Maltoni, Schwetz, Tortola, Valle (updated Sep 2007)

 $\sin^2 \theta_{23} = 0.5 \ (0.38 - 0.64), \quad \sin^2 \theta_{13} = 0 \ (< 0.028) \qquad \sin^2 \theta_{12} = 0.30 \ (0.25 - 0.34)$

 $\Delta m^2_{23} = (2.38^{+0.2}_{-0.16}) \times 10^{-3} \text{ eV}^2, \quad \Delta m^2_{12} = (8.1 \pm 0.6) \times 10^{-5} \text{ eV}^2$

• indication of non-zero θ_{13} :

 $\sin^2 \theta_{13} = 0.016 \pm 0.010 \ (1\sigma)$

Fogli, Lisi, Marrone, Palazzo, Rotunno, June 2008

Tri-bimaximal Neutrino Mixing:

 $U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$

 $\sin^2 \theta_{\text{atm, TBM}} = 1/2 \quad \sin \theta_{13,\text{TBM}} = 0.$ $\sin^2 \theta_{\odot,\text{TBM}} = 1/3 \quad \tan^2 \theta_{\odot,\text{TBM}} = 1/2$ $\tan^2 \theta_{\odot,\text{exp}} = 0.429$ new KamLAND result: $\tan \theta_{\odot,exp}^2 = 0.47^{+0.06}_{-0.05}$

Discovery phase into precision phase for some oscillation parameters

Neutrino Mass Spectrum

- search for absolute mass scale:
 - end point kinematic of tritium beta decays:

Tritium $\rightarrow He^3 + e^- + \overline{\nu}_e$ KATRIN: increase sensitivity ~ 0.2 eV

- WMAP + 2dFRGS + Lya: $\sum (m_{v_i}) < (0.7-1.2) \text{ eV}$
- neutrinoless double beta decay

current bound: | < m > | < (0.19 - 0.68) eV (CUORICINO, Feb 2008)

The known unknowns:

- How small is θ_{13} ?
- $\theta_{23} > \pi/4, \theta_{23} < \pi/4, \theta_{23} = \pi/4?$
- Neutrino mass hierarchy (Δm_{13}^2) ?
- CP violation in neutrino oscillations?

Two Theoretical Challenges

- current data post two challenges:
 - why $m_v \ll m_{u,d,l}$
 - why lepton mixing large while quark mixing small
- To answer the first question
 - * Seesaw mechanism: most appealing scenario
 - * can originate from GUT scale physics
 - * can also come from new TeV scale physics
- Seesaw: not sufficient to explain the whole mass matrix with mass hierarchy and two large and one small mixing angles
 - * Flavor Symmetries

Neutrino Mass Generation

3 ways to generate dim-5 HHLL effective operators

• exchange singlet fermions (1c, 1w, Y=0) [type-I seesaw]

Minkowski, 1977; Yanagida, 1979; Glashow, 1979; Gell-mann, Ramond, Slansky, 1979; Mohapatra, Senjanovic, 1979;

• exchange weak triplet scalar (1c, 3w, Y=2) [Type-II seesaw]

Lazarides, 1980; Mohapatra, Senjanovic, 1980

• weak triplet fermions (1c, 3w, Y=0) [type-III seesaw]

Foot, Lew, He, Joshi, 1989; Ma, 1998

Testing Neutrino Mass Generation Mechanisms

- Naturally small Dirac neutrino masses:
 - extra dimension: through small wave function overlap
 - associated phenomenology in extra dimension
- To test seesaw scenarios for Majorana masses, need to establish
 - Lepton Number Violation $\Delta L = 2$
- Consequences
 - neutrino-less double beta decay:
 - discovery does not imply $m_{\nu} \neq 0$
 - LR model with low M_R : non-zero neutrinoless double beta decay even for $y_D, m_\nu \to 0$
- Important to have tests @ colliders

GUT Scale Seesaw

- a natural way to generate small neutrino masses
- Introduce right-handed neutrinos, which are SM gauge singlets [predicted in many GUTs, e.g. SO(10)]
- The Lagrangian: $\mathcal{L}_Y = f_{ij}\overline{e}_{R_i}\ell_{L_j}H^{\dagger} + h_{ij}\overline{\nu}_{R_i}\ell_{L_j}H - \frac{1}{2}(M_R)_{ij}\overline{\nu}_{R_i}^c\nu_{R_j} + h.c. .$
- integrating out N_R: effective mass matrix

$$\begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \qquad \text{light neutrino mass: } m_\nu \sim \frac{m_D}{M_R} m_D$$

 $m_{\nu} \sim \sqrt{\Delta m_{atm}^2} \sim 0.05 \text{ eV}, \ m_D \sim m_t \sim 172 \text{ GeV}$

 $\Rightarrow M_R \sim 10^{15} \text{GeV} ~~ \text{M}_{\text{GUT}}$ seesaw \Rightarrow Neutrinos are Majorana fermions \Rightarrow Lepton Number violation

Probing GUT Based Models

- A direct probe of GUT scale seesaw: LFV charged lepton decays
 μ→ e γ ; τ→ μγ ; τ→ e γ decays ; μ-e conversion, etc...
- mSUGRA b.c.'s: slepton mass matrix diagonal at MGUT
- RG induced off-diagonal elements in slepton mass matrices

$$BRji = \frac{\alpha^3}{G_F^2 m_s^8} |(m_{LL}^2)_{ji}|^2 \tan^2 \beta,$$

$$(m_{LL}^2)_{ji} = -\frac{1}{8\pi^2} m_0^2 (3 + A_0^2/m_0^2) Y_{jk}^{\dagger} \log\left(\frac{M_G}{M_k}\right) Y_{ki}.$$

• predictions sensitive to mixing parameters and M_R

Probing GUT Based Models

C. Albright & M.-C.C, 2008

prediction

sensitive to M_R

predictions for LFV processes in five viable SUSY SO(10) models:

- -- assuming MSUGRA boundary conditions
- -- including Dark Matter constraints from WMAP

	Models	$\sin^2 \theta_{13}$	M_R 's	aneta	$ A_0/m_0 _{\rm max}$	$\mathrm{BR21}(\mu \to e \gamma)$	$\mathrm{BR32}(\tau \to \mu \gamma)$	$BR(\mu + Ti \to e + Ti)$
	Expt.		(GeV)			$<1.2\times10^{-11}$	$<4.5\times10^{-8}$	$< 4 \times 10^{-12}$
	Limits					$\rightarrow < 10^{-13}$	$\rightarrow < 10^{-9}$	$\rightarrow < 10^{-18}$
Albright & Barr	AB	0.0020	2.4×10^{14}	5	5	$(0.2 - 9) \times 10^{-12}$	$(0.03 - 1) \times 10^{-10}$	$(0.03 - 2) \times 10^{-12}$
	Reals	(2.6°)	4.5×10^8	111		THE STREET		
		19(1)	4.5×10^8	111	11910191			
M-CC & Mahanthappa	CM	0.013	$7.0 imes 10^{12}$	10	12	$(0.02 - 4) \times 10^{-15}$	$(0.02 - 5) \times 10^{-11}$	$(0.01 - 3) \times 10^{-16}$
i i e e e i iananchappa		(6.5°)	$4.5 imes 10^9$					
			1.1×10^7	1914				
Cai & Yu	CY	0.0029	2.4×10^{12}	10	19	$(0.02 - 5) \times 10^{-15}$	$(0.04 - 9) \times 10^{-13}$	$(0.03 - 6) \times 10^{-16}$
	01	(3.1°)	2.4×10^{12} 2.4×10^{12}	10	12	$(0.02 \ 0) \times 10$	$(0.04 \ 5) \times 10$	$(0.03 \ 0) \times 10$
		(0.1)	2.4×10^{12}	1116	(SUMR)			
	Res li	e sun	12			12		. 14
Dermisek & Raby	DR	0.0024	5.8×10^{13}	50	2.5	$(0.05 - 8) \times 10^{-13}$	$(0.02 - 3) \times 10^{-9}$	$(0.01-2) \times 10^{-14}$
	1.11.13	(2.8°)	9.3×10^{11}	1411		123323111650		
		실지원	1.1×10^{10}					
Grimus & Kuhbock	GK	0.00031	$2.0 imes 10^{15}$	10	2	$(0.4 - 80) \times 10^{-11}$	$(0.004 - 1) \times 10^{-8}$	$(0.02 - 5) \times 10^{-11}$
	12111	(1.0°)	$4.1 imes 10^{14}$		11.11.11	Charline.		
		1742	$6.7 imes 10^{12}$	112	192316			
	3.763				3.14741711		A LEUY CALOR SE 188	

LFV Rare Processes

C. Albright & M.-C.C, 2008

LFV Rare Processes

LHC: abundant source of tau's first 3 years low luminosity run (10fb⁻¹) ⇒ improve current limit by an order of magnitude N.G. Unel, 2005 complementary to low energy accelerator based searches

TeV Seesaw without New Interactions

- Assuming no new interaction: small neutrino mass arise with $M_R \sim 100 \text{ GeV}$ $m_D \sim m_e \sim 10^{-4} \text{ GeV}$
 - not totally unreasonable if small electron Yukawa allowed
 - RH neutrinos may be within reach of LHC/ILC
- only way to test seesaw is by producing RH neutrinos
 - Yukawa O(10⁻⁶): irrelevant for colliders
 - RH neutrino production: gauge interaction in the presence of heavy-light mixing; naively,

• Observable at colliders: require mixing V > 0.01

Han, Zhang, 06; del Aguila, Aguila-Saavedra, Pittau, 06; Bray, Lee, Pilaftsis, 07

TeV Seesaw without New Interactions

- Neutrino mass get contributions from different singlet fermions
- neutrino mass small NOT due to seesaw, but cancellation among these contributions
 Buchmuller, Wyler '90; Pilaftsis, '92
- universality of weak interaction & Z-width: V < 0.1
- cancellation at 10⁻⁸ level to get 0.1 eV neutrino mass $m_{\nu}^{(i)} \sim |V_{\alpha i}|^2 M_i = 10^7 \text{ eV} \left(\frac{|V_{\alpha i}|}{0.01}\right)^2 \left(\frac{M_i}{100 \text{ GeV}}\right)$
- with 3 singlets: light neutrino masses vanish if and only if
 - Dirac mass matrix has rank 1

 $m_{\rm D} = m \begin{pmatrix} y_1 & y_2 & y_3 \\ \alpha y_1 & \alpha y_2 & \alpha y_3 \\ \beta y_1 & \beta y_2 & \beta y_3 \end{pmatrix}$

Buchmuller, Greub '91; Ingelman, Rathsman, '93; Heusch, Minkowski, '94; Kersten, Smirnov, '07

- three contributions add up to zero $\frac{y_1^2}{M_1} + \frac{y_2^2}{M_2} + \frac{y_3^2}{M_2} = 0$
- Yukawa couplings arbitrary ⇒ allowing large heavy-light mixing

TeV Seesaw without New Interactions

• symmetry justification for such cancellation:

Kersten & Yu Smirnov, 2007

- L-conservation; discrete subgroups of U(1)_L
- A4
- neutrino masses arise as small perturbations to the cancellation structure
- Collider signatures
 - Lepton Number Violating processes:

$$qar{q}
ightarrow {\it I}_{lpha}^- {\it I}_{eta}^- + {
m jets}$$

- leading order: $m_v=0$ by symmetry (L-conservation) $\Rightarrow \sigma = 0$
- small L-violating effects \Rightarrow small neutrino mass
- unobservable unless fine-tuned

Neutrino mass generation & collider physics decouple

Type-II Seesaw at Colliders

• SU(2) triplet Higgs contribute to neutrino mass $y \Delta LL$

$$M_{\nu} = \sqrt{2} Y_{\nu} v_{\Delta}, \qquad v_{\Delta} = \mu v_0^2 / \sqrt{2} M_{\Delta}^2,$$

 μ : custodial symmetry breaking coupling in scalar potential $H\Delta H^{\dagger}$ need $Y_{\nu}\mu \sim 10^{-12}$ \longrightarrow $Y_{\nu} = 1, \ \mu \sim 10^{-12} \text{ or } Y_{\nu} \sim \mu \sim 10^{-6}$

- Higgs spectrum after SSB: 7 massive physical higgs bosons $H_1, H_2, A, H^{\pm}, \text{ and } H^{\pm\pm}$
- Generic predictions: doubly charged Higgs
 - only couple to leptons, not quarks
 - unique signatures: different from SUSY scalar spectrum

$$\Delta^{++} \rightarrow e^+ e^-, \ \mu^+ \mu^-, \ \tau^+ \tau^-$$

Type-II Seesaw at Colliders

- current limits on doubly charged Higgs:
 - CDF, Do: > 136 GeV
 - HERA: > 141 GeV
 - muonium-anti-muonium oscillation (PSI):

$$\mathcal{A}_{\mu^+ e^- \to \mu^- e^+} \le 3G_F \times 10^{-3} \simeq \frac{\sqrt{2} f_{ee} f_{\mu\mu}}{8M_\Delta^2}$$

for
$$f_{ee} \simeq f_{\mu\mu} \simeq 0.1$$
, $\Rightarrow M_{\Delta^{++}} > 250 \text{ GeV}$

Type-II Seesaw at Collider

- doubly charged Higgs at the LHC:
 - produced through Drell-Yan

Han, Mukhopadhyaya, Si, Wang, '07; Akeroyd, Aoki, Sugiyama, '08; Perez, Han, Huang, Li, Wang, '08; ...

$$q\bar{q} \to \gamma^*, Z^* \to H^{++}H^{--}, \qquad q\bar{q'} \to W^* \to H^{\pm\pm}H^{\mp}.$$

Perez, Han, Huang, Li, Wang, '08; ...

For a mass ~ (200-1000) GeV: cross-section: 100-0.1 fb

potentially observable rate with high luminosity of 300 fb⁻¹ for $M_{\Delta} \sim 600 \text{ GeV}$

Type-II Seesaw at Colliders

• distinguishing NH vs IH mass spectra

Perez, Han, Huang, Li, Wang, '08

TeV Seesaw with New Interactions

- new gauge interactions RH neutrinos participate:
- seesaw mechanism may be tested even for small heavy-light mixing
- an example is the left-right $SU(2)_L \ge SU(2)_R$ symmetric model
- particle content

• fermions:
$$Q_{i,L} = \begin{pmatrix} u \\ d \end{pmatrix}_{i,L} \sim (1/2, 0, 1/3), \qquad Q_{i,R} = \begin{pmatrix} u \\ d \end{pmatrix}_{i,R} \sim (0, 1/2, 1/3)$$

 $L_{i,L} = \begin{pmatrix} e \\ \nu \end{pmatrix}_{i,L} \sim (1/2, 0, -1), \qquad L_{i,R} = \begin{pmatrix} e \\ \nu \end{pmatrix}_{i,R} \sim (0, 1/2, -1)$

• scalars:

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \sim (1/2, \ 1/2, \ 0) \qquad \Delta_L = \begin{pmatrix} \Delta_L^+/\sqrt{2} & \Delta_L^{++} \\ \Delta_D^0 & -\Delta_L^+/\sqrt{2} \end{pmatrix} \sim (1, \ 0, \ 2) \qquad \Delta_R = \begin{pmatrix} \Delta_R^+/\sqrt{2} & \Delta_R^{++} \\ \Delta_D^0 & -\Delta_R^+/\sqrt{2} \end{pmatrix} \sim (0, \ 1, \ 2)$$

- upon LR symmetry breaking: neutrino masses generated
- type-I + type-II contribution

$$m_{\nu} = f v_L - \frac{y^2 v^2}{f v_R}$$

Pati, Salam, 74; Mohapatra, Pati, 75;

Mohapatra, Senjanovic, 75

Left-Right Model

- Left-right Model attractive:
 - Parity restoration

Pati, Salam, 74; Mohapatra, Pati, 75; Mohapatra, Senjanovic, 75

- solution to the strong CP problem
- if CP broken spontaneously through complex VEV, connection between leptogenesis and low energy leptonic CPV processes (neutrino oscillation, neutrinoless double decay, ...) possible

M-CC & Mahanthappa, 05

Left-Right Model

- TeV scale LR model:
 - neutrino mass
 - preferred SUSY vacuum: preserved R-parity, break P $v_R \neq 0, v_L = 0$
 - small neutrino mass with TeV W_R and Yukawa y 10^-6
 - $W_R \& Z'$ at LHC
 - production independent of light-heavy mixing
 - signal:

$$pp \to \mu^+ \mu^+ jj + X$$

- very small background
- current limit from Do & CDF: M_{WR} > 780 GeV
- LHC can easily probe W_R up to (3-4) TeV and v_R in (100-1000) GeV range

Azuleos et al 06; del Aguila et al 07, Han et al 07; Chao, Luo, Xing, Zhou, '08; ...

x

Keung, Senjanovic, '83

Left-Right Model

- High Scale SUSY Left-right Model
 - $M_R \sim 10^{11}$ 10^{12} GeV
 - if SUSY broken by Anomaly Mediation
 - TeV scale triplet Higgs to avoid electric charge nonconservation

Mohapatra, Okada, Yu, 07 Setzer, Spinner, Mohapatra, 08

TeV Scale Seesaw with U(1)_{NA}

M.-C.C, A. de Gouvea, B. Dobrescu, 2006

- gauge symmetry SM x non-anomalous $U(1)v + N v_R$
- SM particles & v_R : all charged under U(1)
- U(1) forbids dim-4, dim-5 operators
- To get $m_{\nu} \neq 0$: $U(1)_{\nu} \langle \phi \rangle$: SM singlet breaks $U(1)_{\nu}$

- non-anomalous U(1)v $\Lambda \sim TeV!$
 - anomaly cancellation conditions \Rightarrow constraints on U(1) charges
 - generation dependent charges \Rightarrow U(1) flavor symmetry

 \Rightarrow mixing pattern & mass hierarchy (FN)

- TeV cutoff possible with 3 RH neutrinos
- light sterile neutrinos: DM candidate
- TeV scale Z': probing flavor sector at colliders

Non-anomalous v.s. Anomalous U(1)

- anomaly cancellations: relating charges of different fermions
 - [U(1)]³ condition generally difficult to solve
- most models utilized anomalous U(1):
 - mixed anomaly: cancelled by Green-Schwarz mechanism
 - [U(1)]³ anomaly: cancelled by exotic fields besides RH neutrinos
 - U(1) broken at fundamental string scale

constraints not as stringent

- earlier claim that U(I) has to be anomalous to be compatible with SU(5) while giving rise to realistic fermion mass and mixing patterns
 L.E. Ibanez, G.G. Ross 1994
- non-anomalous U(1) can be compatible with SUSY SU(5) while giving rise to realistic fermion mass and mixing patterns
 - no exotics other than 3 RH neutrinos M.-C.C, D.R.T. Jones, A. Rajaraman, H.B.Yu, 2008
 - U(1) also forbids Higgs-mediated proton decay

TeV Scale Seesaw

M.-C.C, A. de Gouvea, B. Dobrescu, 2006

- "Leptocratic model" with 3 v_R : N₁, N₂, N₃
 - Orwellian Leptocratic" model:
 - all U(1)_{NA} charges for SM fermions are generation independent: no charged lepton flavor violating FCNC mediated by Z' at tree level
 - $\bullet \quad Q(N_2) = Q(N_3) \neq Q(N_1)$
 - bi-large mixing through anarchy
 - three active neutrinos: can either be Dirac or Majorana fermions
 - three light sterile neutrinos: two heavy ones (1keV ~ 1MeV) & one ultra light (10⁻⁹ eV)
 - active-sterile neutrino mixing: $< 10^{-3}$
 - "2+1 leptocratic": allowed lepton doublets to have generation dependent U(1)_{NA} charges
 - bi-large mixing from U(1)_{NA}

TeV Scale Seesaw

M.-C.C, A. de Gouvea, B. Dobrescu, 2006

- probing the flavor sector at the colliders
- (2+1) leptocratic models

$$\frac{B\left(Z' \to e^+e^-\right)}{B\left(Z' \to \mu^+\mu^-\right)} = \left(\frac{1+2az_{\phi}}{1-az_{\phi}}\right)^2$$

$$\frac{B\left(Z' \to e^+ e^-\right)}{B\left(Z' \to t\bar{t}\right)} = 3\left(1 + 2az_{\phi}\right)^2$$

$$z_{\phi} = -\frac{3(a+b)}{a^2+ab+b^2}$$

- invisible decays of Z': distinguish different U(1)
 - $U(1)_{B-L}$: $B(Z' \rightarrow invisible) = 3/8$
 - Orwellian Z': $B(Z' \rightarrow invisible) = 6/7$

Conclusion

- conventional GUT scale seesaw:
 - can be tested through LFV searches
 - LHC useful for tau decays
- TeV scale seesaw without new interactions
 - type-I seesaw:
 - cancellation required
 - LNV processes small perturbation that generate small neutrino mass ⇒ decouple from collider physics
 - type-II seesaw:
 - TeV doubly charged Higgs⇔small couplings (unnatural?)
 - unique signature: $\Delta^{++} \rightarrow e^+ e^-, \ \mu^+ \mu^-, \ \tau^+ \tau^-$
 - doubly charged Higgs produced through gauge interaction (independent of light-heavy mixing)
 - 300 fb⁻¹ for $M_{\Delta} \sim 600 \text{ GeV}$

Conclusion

- TeV Scale Seesaw with new interactions
 - SUSY Left-right model:
 - TeV scale $W_R \Leftrightarrow$ small Yukawa
 - tested via searches for W_R
 - production independent of light-heavy mixing
 - LHC: W_R up to (3-4) TeV, v_R in (100-1000) GeV range
 - $U(I)_{NA}$ model:
 - TeV cutoff naturally arise
 - anomaly cancellations: constraints on charges, predict flavor structure
 - TeV scale seesaw possible for 3 RH neutrinos
 - measuring Z' decay: can probe the flavor sector at colliders