

German Hermann, MPI für Kernphysik (for the H.E.S.S. Collaboration)

www.mpi-hd.mpg.de/HESS

German Hermann, MPI für Kernphysik (for the H.E.S.S. Collaboration)

- ➢ The H.E.S.S. experiment
- Overview of observations
 - Classes of Galactic sources
 - Extragalactic physics
- Quantum Gravity
- Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

www.mpi-hd.mpg.de/HESS

German Hermann, MPI für Kernphysik (for the H.E.S.S. Collaboration)

www.mpi-hd.mpg.de/HESS

➤ The H.E.S.S. experiment

- Overview of observations
 - Classes of Galactic sources
 - Extragalactic physics
- Quantum Gravity
- Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

See also: → Bruno Khelifi → Andreas Zech ∫

Sunday morning

120 m

4 Telescopes since 2004 Namibia

© Philippe Plailly

γ- Ray (100 GeV)

Stereoscopy:

- ✓ Angular resolution
- ✓ Energy resolution
- ✓ Background rejection

✓ Sensitivity

Stereo Performance Parameters

State of the Art

Energy threshold:	100 GeV	
Energy resolution:	15 %	
Field of view:	~ 4 deg	
Angular resolution:	0.05° - 0.1°	
Pointing accuracy:	~ 10 arcsec	
Signal Rate:	~55 / min (Crab-like)	
Sensitivity:	1 Crab in 30 sec 0.01 Crab in < 25 h	

German Hermann, MPI für Kernphysik (for the H.E.S.S. Collaboration)

➢ The H.E.S.S. experiment

- Overview of observations
 - Classes of Galactic sources
 - Extragalactic physics
- Quantum Gravity
- Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

H.E.S.S. Galactic Plane Survey

H.E.S.S. Galactic Plane Survey

- Stellar winds
- Supernova remnants
- Pulsar wind nebulae
- Binary Systems
- Molecular Clouds
- Galactic center"Dark sources"

Supernova remnants

SNRs as Sources of Galactic Cosmic Rays

ASCA SN 1006 data: "first strong observational evidence that very-high-energy cosmic rays are produced in SNR shocks"

(Koyama, Nature 1995)

SN 1006

See also: H.E.S.S., Nature (2004)

Particle acceleration to beyond 100 TeV

2004-2006 Data

Proof of TeV emission from the shell of SNRs

- 1998 : Detection by CANGAROO (Tanimori, ApJ 1998)
- 2005 : HESS upper limits, well below CANGAROO flux (HESS, A&A 2005)

SN 1006 revealed in TeV gamma-rays

103 h of data (2003-2008) >5 sigma signal (~590 γ -rays) in pre-defined NE region

- TeV flux level: ~ 1 % of Crab
- Within statistics, both leptonic (B ~ 30 μG) and hadronic (n ~ 0.1 / cm³) scenarios seem reasonable
- → a clear case for GLAST and CTA

HESS (Gamma08)

The growing family of shell-type TeV SNRs ...

"Dark sources"

Discovery Potential: "Dark Sources"

A bias free view on the sky: \rightarrow new class of TeV sources

A bias free view on the sky: \rightarrow new class of TeV sources

No counterparts in other energy bands seen (radio, IR, optical, X-ray, ...)

Aligned with Galactic plane All are extended: O (10 arcmin) Hard spectrum: $\Gamma \sim 2.1 \dots 2.5$

- → Maximum energy output of these sources in TeV γ-rays
- \rightarrow Hadron accelerator ?
- \rightarrow Old PWN ?
- \rightarrow GRB remnant ?
- \rightarrow Dark Matter ?

HESS A&A 477 (2008)

A bias free view on the sky: \rightarrow new class of TeV sources

No counterparts in other energy bands seen (radio, IR, optical, X-ray, ...)

→ More sensitive X-ray and radio observations following

the TeV detection

HESS A&A 477 (2008)

Pulsar discovery triggered by H.E.S.S.

German Hermann, MPI für Kernphysik (for the H.E.S.S. Collaboration)

➢ The H.E.S.S. experiment

- Overview of observations
 - Classes of Galactic sources
 - Extragalactic physics
- Quantum Gravity
- Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

Object	Z	Туре
M87	0.004	AGN (FR I)
Mkn 421	0.030	BLLac (HBL)
PKS 0548-322	0.069	BLLac (HBL)
PKS 2005-489	0.071	BLLac (HBL)
RGB J0152+017	0.08	BLLac (HBL)
PKS 2155-304	0.116	BLLac (HBL)
1ES0229+200	0.139	BLLac (HBL)
H2356-309	0.165	BLLac (HBL)
1ES 1101-232	0.186	BLLac (HBL)
1ES 0347-121	0.188	BLLac (HBL)
PG 1553+113	>0.25 ?	BLLac (HBL)

Detection of 11 AGNPG 1553+113Discovery of 8 AGNUpper Limits on >20 Objects (< 0.01 ... 0.05 Crab)</th>

EBL contains information on history of star- and galaxy formation

→ Direct measurement very difficult due to foreground light

Absorption through pair production with diffuse EBL in FIR to UV (for TeV to GeV)

Absorption through pair production with diffuse EBL in FIR to UV (for TeV to GeV)

"News" on the Extragalactic Background Light

"News" on the Extragalactic Background Light

EBL is at lower limit, as obtained from Hubble galaxy count

H.E.S.S., Nature (2006)

- Confirmed by 1ES0347, z = 0.188 H.E.S.S., A&A 473 (2007)
- Additional constraints on Mid-IR by 1ES 0229 w/ hard spectrum :

→ EBL (2-10 μ m) ~ λ^{-1}

H.E.S.S., A&A 475 (2007)

The Extragalactic Background Light

- EBL is at lower limit, as obtained from Hubble galaxy count
- No significant contribution of pop III stars (z ~ 7...15)
- The Universe is more transparent to Gamma-Rays than expected
- We can "see" further than expected, more sources accessible

German Hermann, MPI für Kernphysik (for the H.E.S.S. Collaboration)

- ➢ The H.E.S.S. experiment
- Overview of observations
 - Classes of Galactic sources
 - Extragalactic physics
- Quantum Gravity
- Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

Monthly light curve: 2002 ... 2006

- Source monitored since 2002 (~240 h)
- Average flux : 3.95 +- 0.39 10⁻¹¹ cm⁻² s⁻¹
- Huge outburst in July 2006 two main flares of 28 and 30 July

- → Time resolved VHE spectroscopy of AGN jets (→ Andreas Zech)
- \rightarrow Variability on timescales 2-3 minutes

HESS, A&A (2007)

→ Be aware of astrophysical source effects (spectral changes)

Modified cross correlation function:
 → no significant lag with energy found!

Most constraining limit on speed of light modification to date: (model independent)

 $E_{QG} > 5 \% M_{P}$

HESS, PRL (accepted)

German Hermann, MPI für Kernphysik (for the H.E.S.S. Collaboration)

- ➢ The H.E.S.S. experiment
- Overview of observations
 - Classes of Galactic sources
 - Extragalactic physics
- Quantum Gravity
- Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

Indirect search for Dark Matter

Search for Dark Matter:

- 2) Accelerator: SUSY ? How to prove it is DM ?
- 3) Direct Detection: probes DM in halo
- 4) Indirect detection: probes DM outside the solar system

Search for (self) annihilation of WIMPs (e.g. neutralinos)

Where to search ? $F \sim \rho^2 \rightarrow$ regions of high density

→ The Galactic Centre

> Nearby and massive (other potential γ -ray sources Galactic Halo "Clumps"

Nearby, no astrophysical background?

Dwarf Galaxies

Relatively nearby, very high mass to light ratios
Galaxy clusters

Very massive (but far!)

How dense?

Depends on models for DM halo shapes (...NFW, Moore ...)

Abell 1689, NASA/HST

- Power law spectrum 160 GeV ... 30 TeV
- No curvature in this regime exponential cutoff: E_c > 9 TeV @ 95% CL
- No indications for line emission

Radial profile ~ PSF Upper limit on extension: < 1.2'

Signal is most probably of *astrophysical* origin ! Try anyway to fit DM models:

 \rightarrow M ~ 14 TeV (a bit high ...)

German Hermann, MPI für Kernphysik (for the H.E.S.S. Collaboration)

- ➢ The H.E.S.S. experiment
- Overview of observations
 - Classes of Galactic sources
 - Extragalactic physics
- Quantum Gravity
- Dark Matter search
- ➤ A glance on H.E.S.S. phase 2

Improved sensitivity (x1.5 - 2)in current regime up to ~ 1 TeV Energy range down to ~50 GeV will finally become accessible

Near Future: H.E.S.S. Phase II

Near Future: H.E.S.S. Phase II

H.E.S.S. Phase II Camera

2048 Pixels Pixel size: 0.07° FoV : ~ 3.6°

SAM

Sampling:1 GS/secDepth256 cellsBandwidth> 300 MHzDyn. Range> 11 bit

Same principle as in Phase I: Analog pipeline for signal buffering New pipeline chip: SAM On board signal integration

Sampling Analog Memory

Last week in Annecy

H.E.S.S. collaboration in front of camera mechanics test setup (09/2008)

Conclusions from the High Energy Stereoscopic System

German Hermann, MPI für Kernphysik (for the H.E.S.S. Collaboration)

www.mpi-hd.mpg.de/HESS and .../HESS/public/HESS_catalog.htm From source hunting to real astrophysics

- Many discoveries, population studies now possible
- 'Precision' measurements
- Cosmology and particle physics
- Composition (e[±], Fe)
- Still more in the pipeline

The path towards CTA is paved

