High Energy Gamma-Rays from GRBs and Clusters induced by UHE Hadrons Susumu Inoue (Kyoto U.)

outline

1. introduction radio-loud AGNs vs Auger

2. GRBs:

proton-induced cascade emission proton-dominated GRBs UHE nuclei synchrotron

3. clusters: UHE proton-induced X & γ-rays heavy nuclei as UHECRs

review: Inoue, arXiv:0809.3205 (TAUP2007 proceedings)

GRBs: acceleration sites

宇宙最大爆発

escape nontrivial

accel. nontrivial

GRB GeV-TeV emission from electrons+protons

- electrons+protons acceleration in internal shocks (prompt phase)
- pair cascading, py interactions, various radiative processes...
- parameters: pulse energy E_{sh} , pulse timescale Δt , Γ , $f_B = u_B/u_e$ fix E_{pk} =300 keV, β =2.5, assume $u_p=u_e$, $p_p=2$ Asano & SI 07
- fluence spectra, z=0.1, no intergalactic $\gamma\gamma$

GRB GeV-TeV emission

-> proton signature

Fermi, MAGIC (II), HESS (II), VERITAS, CANG.III ... MILAGRO, ARGO...

post-Swift GRB energetics

- local emissivity $E_p^2 dN_p/dt dE_p$ ~ 10⁴⁴ erg/yr/Mpc³ for E_p >10¹⁹ eV only, >10⁴⁴ if also at E_p <10¹⁹ eV
- post-Swift local GRB rate
 - ~ 0.2-1 /yr/Gpc³ if \propto SFR
 - ~ 0.05 /yr/Gpc³ if stronger z-evol.
 - -> required total proton energy/burst (iso. eq.) $\mathcal{E}_{p,iso} \sim 2x10^{54} - 3x10^{55} \text{ erg } (p=2, E_p \sim 10^9 - 10^{20} \text{ eV})$ $\mathcal{E}_{e,iso} \sim \mathcal{E}_{v,iso} (1-10^4 \text{ keV}) \sim 10^{53} - 10^{54} \text{ erg}$

GRBs out of competition?

Daigne+ 06, Guetta & Piran 07 Le & Dermer 07...

post-Swift GRB energetics

- local emissivity $E_p^2 dN_p/dt dE_p$ ~ 10⁴⁴ erg/yr/Mpc³ for E_p >10¹⁹ eV only, >10⁴⁴ if also at E_p <10¹⁹ eV

加油

- post-Swift local GRB rate
 - ~ 0.2-1 /yr/Gpc³ if \propto SFR
 - ~ $0.05 / yr/Gpc^3$ if stronger z-evol.
 - -> required total proton energy/burst (iso. eq.) $\mathcal{E}_{p,iso} \sim 2x10^{54} - 3x10^{55} \text{ erg } (p=2, E_p \sim 10^9 - 10^{20} \text{ eV})$ $\mathcal{E}_{e,iso} \sim \mathcal{E}_{v,iso} (1-10^4 \text{ keV}) \sim 10^{53} - 10^{54} \text{ erg}$

GRBs out of competition?

-> p/e ratio $\mathcal{I}_{p}/\mathcal{I}_{e} > 10-100$ proton-dominated GRBs?

- central engine poorly understood
- p/e>>1 plausible from shock physics

Daigne+ 06, Guetta & Piran 07 Le & Dermer 07...

proton-dominated GRB GeV-TeV effect of pγ-induced pair cascade

Asano, SI & Meszaros ApJ, submitted arXiv:0807.0951

FIG. 1.— Single pulse, prompt photon spectra for varying $\epsilon_{\rm p}/\epsilon_{\rm e}$

high E_{peak} GRBs already observed?

Kaneko+ 08

reanalysis of EGRET TASC data

GRB with $E_{peak} > 170 \text{ MeV}$

+ few others with high-energy excess

more to be found by GLAST, AGILE?

proton-dominated GRB GeV-TeV B dependence: proton synchrotron or secondary IC

FIG. 5.— Single pulse, prompt photon spectra for $\Gamma = 1000$,

acceleration/survival of heavy nuclei in GRBs

synchrotron from UHE nuclei

Inoue, in prep.

photon energy $v_{syn} \propto E^2 Z/A^3$ power $P_{syn} \propto E^2 Z^4/A^4$ loss time $t_{syn} \propto E^{-1} A^4/Z^4$

UHE nuclei composition at GRB?

unmixed O, Si, Fe clumps!

fiducial assumption:

abundance at low E=Galactic CR source at fixed E/A H=1, He=0.07, C= $3x10^{-3}$, O= $3.7x10^{-3}$, Si= $7x10^{-4}$, Fe= $7x10^{-4}$

caveat: metals may be highly enhanced in GRBs!

Inoue, in prep. nuclear synchrotron spectra normalize to proton synchrotron **expansion limited case** $t_{acc}(\infty Z) = t_{dyn}$ $E_{Z} \propto Z, \nu_{Z} \propto Z^{3}/A^{3}, t_{Z} \propto A^{4}/Z^{5}$ 0.5 1.5 р E_{Z}/E_{p} 0 1 -0.5 0.5 $t_{\rm Z}/t_{\rm r}$ **vf**_v -1.5 0 Fe x100 He -0.5 -2 $v_{\rm Z}/v_{\rm p}$ C,O x10 **C,O** -1 -2.5 -3 -2 -1 0 5 10 15 20 25 1 0 ν Ζ

p dominant, but t_{syn} shorter -> late appearance of He? pure CO or Fe different E_{peak} , t_{syn}

nuclear synchrotron spectra

synchrotron limited case $t_{acc}(\infty Z) = t_{syn}(\infty A^4/Z^4)$ most relevant $E_Z \propto A/Z^{1.5}, v_Z \propto A/Z^2, t_Z \propto A^2/Z^{2.5}$

nuclear synchrotron spectra photodisintegration limited case $t_{acc}(\infty Z) = t_{dis}(\infty A^{1.2})$ depends on low E spec. $E_Z \propto Z/A^{1.2}, v_Z \propto Z^3/A^{5.4}, t_Z \propto A^{5.2}/Z^5$ 0.5 2 p $t_{\rm Z}/t_{\rm n}$ 0 1 -0.5 0 -1 E_Z/E_p -1 νf_{-1.5} -2 He -3 -2 $v_{\rm Z}/v$ -2.5 -4 5 10 15 20 25 0 -2 -3 -1 0 1 Ζ ν

implications

He observable -> crucial for interpretation of UHECR ankle
C,O,Si,Fe... may be observable
if highly enhanced and/or protons cool faster

unique probe of UHE nuclei acceleration in GRBs!

cluster accretion shocks

accretion (minor merger) strong (high *M*) shock -> hard spectra, high efficiency

accretion power $L_{acc}(M) = f_{gas} GM\dot{M}/R_s$ ~10⁴⁶ erg/s (M/10¹⁵ M_{Θ})^{5/3}

massive clusters (~ $10^{15} M_{\odot}$)

L~10⁴⁶ erg/s n~10⁻⁶ Mpc⁻³ P~10⁴⁰ erg s⁻¹Mpc⁻³

expected high energy emission from clusters

• primary electron IC traces shock $t_{IC} << t_{shock}$ e.g. Waxman & Loeb 00 Totani & Kitayama 00 • LE proton p+p-> π_0 traces gas $t_{loss}, t_{conf} >> t_H$ Pfrommer+ 08 assume p=2, $\xi_e=0.01$

UHE proton acceleration at accretion shocks

Coma-like cluster $M=2x10^{15} M_{\Theta}$

shock radius, velocity, etc. $R_s \sim 3.2 \text{ Mpc}$ $V_s \sim 2200 \text{ km/s}$ $B_{s,eq} \sim 6 \mu G$

Bohm limit shock accel. time $t_{acc}=(20/3) \eta r_g c/V_s^2$ $\eta \sim 1$ (c.f. SNR observations) shock lifetime(?)

 $t_{sl} \sim R/V \sim 2 \text{ Gyr} < t_{adiab} \sim 6 \text{ Gyr}$

E_{p,max}~10¹⁸-10¹⁹ eV

c.f. Kang, Rachen & Biermann 97

nuclei from cluster accretion shocks as UHECRs SI, Sigl, Miniati & Armengaud, astro-ph/0701167

加油!

heavy nuclei E_{max} for $B_s \sim 1 \mu G$ $E_{Fe, max} \sim 10^{20} \text{ eV}$

nuclei from clusters as UHECRs

may work if:

- $B_s \sim 1 \mu G$, Bohm (fully turbulent)
- source Fe/p Galactic CR-like
- "right" Galactic+extragal. B field

summary gamma-rays in relation to UHECR sources

GRBs

UHE protons induce py cascade or p synchrotron GeV-TeV

p-dominated GRBs as UHECR sources?

can induce high E_{peak}

UHE nuclei induce Z synchrotron GeV-TeV

cluster accretion shocks

UHE protons induce hard X-rays + TeV gamma-rays from photopairs heavy nuclei as UHECR sources?

summary gamma-rays in relation to UHECR sources

GRBs

UHE protons induce py cascade or p synchrotron GeV-TeV

p-dominated GRBs as UHECR sources?

can induce high E_{peak}

UHE nuclei induce Z synchrotron GeV-TeV

cluster accretion shocks

UHE protons induce hard X-rays + TeV gamma-rays from BH pairs heavy nuclei as UHECR sources?

Who will win UHECR gold?

