Recent Results from IceCube

Erik Blaufuss - University of Maryland for the IceCube Collaboration TevPA 08 - Beijing

University of Oxford

University Utrecht

- Univ Alabama, Tuscaloosa
- Univ Alaska, Anchorage
- UC Berkeley
- UC Irvine
- Clark-Atlanta University
- U Delaware / Bartol Research Inst
- Georgia Tech
- University of Kansas
- Lawrence Berkeley National Lab
- University of Maryland
- The Ohio State University
- Pennsylvania State University
- University of Wisconsin-Madison
- University of Wisconsin-RiverFalls
- Southern University, Baton Rouge

The IceCube Collaboration

32 Institutions, ~250 members

Neutrino detection in ice

AMANDA (1995-2000) 19 Strings 677 Modules

IceCube Neutrino Observatory

IceCube Neutrino Observatory

2004-2005 : I String

IceCube Neutrino Observatory

IceCube Neutrino Observatory

A collection of through-going muons

Tue Jan 29 08:39:34 2008

An EeV event in IceCube40

An EeV event in IceCube40

Meters

Reflected Signal

Coincident muons

- IceCube large enough to observe multiple muons from different air showers in the same event.
- Grows to ~5% of events in full lceCube.
- Two down-going tracks can easily fake an upward going track!

IceCube at the South Pole

Life at the South Pole

Digital Optical Module (DOM)

10 inch Hamamatsu PMT Autonomous data collection Self triggering with 0.25 pe threshold Waveform sampling on main board: 300 MHz for 400 ns w/ custom chip 40 MHz for 6.4 µsec w/ 'fast' ADC Digital data packets sent to surface Time calibration with surface GPS with 2 ns resolution High voltage generated internally Low power consumption (3.5 Watts) Large dynamic range (500 pe / 15 ns) Integrated flasherboard with 12 LED Self calibrating Robust design - < 1% failure Expect 97% of DOMs operating in 15y

Digital Optical Module (DOM)

10 inch Hamamatsu PMT Autonomous data collection Self triggering with 0.25 pe threshold Waveform sampling on main board: 300 MHz for 400 ns w/ custom chip 40 MHz for 6.4 µsec w/ 'fast' ADC Digital data packets sent to surface Time calibration with surface GPS with 2 ns resolution High voltage generated internally Low power consumption (3.5 Watts) Large dynamic range (500 pe / 15 ns) Integrated flasherboard with 12 LED Self calibrating Robust design - < 1% failure Expect 97% of DOMs operating in 15y

Drilling and deployment

Drilling and deployment

IceCube laboratory

- ICL is central data center for IceCube at South Pole
 - Opened in January 07
 - 17 racks of computers
- All cables and servers for IceCube DOMs, DAQ and online filtering
- All Level I filtering done at South Pole in real time and data sent north via satellite

Signal and backgrounds

Optimal detector at high energies

Effective area for neutrinos

-Sensitivity grows with detector -Not optimized for IC22/IC80 Signal begins to dominate at higher energies

Strings	Year	Livetime	µ rate	V rate
IC9	2006	I 37 days	80 Hz	1.7 / day
IC22	2007	275 days	550 Hz	28 / day
IC40*	2008	~365 days	1000 Hz	110 / day
IC80*	2011	~365 days	1650 Hz	220 / day
* Predicted				

Point sources: method and sensitivity

- Select good signal events
- Use unbinned maximum likelihood search

MACRO: ApJ 546, 2000 ANTARES, ICRC 2007 IC80, Astrop. Phys. 20, 2004

- 3.8 yr livetime
- 95% of RA-randomized skymaps have maximum significance > 3.38 $\sigma \rightarrow$ Not significant

IceCube 9 point source search

- 60% of randomized signal maps have maximum significance > 3.35
 - No significant excess found
- 26 a-priori source locations also searched, none show a significant excess

IceCube 22- Point Source Search

Hottest spot found at r.a. 153°, dec. 11° pre-trial p-value: 7×10⁻⁷ (4.8 sigma)

Accounting for all trials, p-value for analysis is 1.34% (2.2 sigma).

At this significance level, consistent with fluctuation of background. Full details are in Chad Finley's parallel presentation on Sunday

Moon shadow

IC40: April, May, June

h2 Entries 1404975

1.288

14.98

Mean

RMS

20

Cosmic Ray Flux

- Will be used to investigate detector angular resolution

10

Moon

 $(\alpha_{event} - \alpha_{moon})^* \cos(\delta_{event})$

0

- 7 year AMANDA data in good agreement with atmospheric neutrino models.
- IceCube 80 will collect ~60k atmospheric neutrinos/year
 - Study prompt high energy component of atmospheric neutrino flux
 - Search for new physics (violations of Lorentz Invariance)

Search for a diffuse flux

Search of 2000-2003 AMANDA data for an excess of cosmic neutrinos from unresolved point sources Comparing:

- Atmospheric neutrinos
- E⁻² signal

Phys. Rev. D 76, 042008 (2007)

Search for a diffuse flux

Phys. Rev. D 76, 042008 (2007)

Indirect solar WIMP searches

- Search for neutrino signal from neutralino annihilation
 - $\chi\chi \rightarrow W^+W^- \rightarrow V$
- No observed excess constrains allowed MSSM models

Preliminary

IceCube as MeV SN ν detector

...first proposed by Halzen, Jacobsen & Zas, astro-ph/9512080

IceCube as MeV SN ν detector

...first proposed by Halzen, Jacobsen & Zas, astro-ph/9512080

Future Plans - The Deep Core

- Instrument the clear ice found in lower half of IceCube volume
- Extends IceCube sensitivity to neutrino energies below ~100 GeV
 - DOMs built using high QE PMTS
 - Rest of IceCube as veto
 - Replacement for AMANDA strings

Future Plans - The Deep Core

Future plans

- IceCube on track to be completed in 2011
 - Includes 6 additional Deep Core strings
- R&D work toward new detection techniques
 - Test modules for both radio and acoustic EHE neutrino detectors have been deployed
 - See Timo Karg's talk in parallel session
- Multi-Messenger astronomy studies
 - Search for correlations of IceCube neutrino signals with observations in Fermi, Swift, ACTs, Milagro/HAWC, ROTSE, LIGO...

Other topics

- Cosmic ray physics with IceTop
 - Surface array of Ice-Cherenkov tanks
 - Study the composition and spectrum of primary cosmic rays in the knee region
- Neutrinos from GRBs
 - See talk by Erik Strahler in parallel session
- Exotic particle searches
 - See talk by Alex Olivas in parallel session

Summary

- IceCube construction is 50% complete
 - Construction of entire array, including addition of Deep Core detector, will be complete in 2011
 - IceCube40 detector currently operating and returning analysis-ready data
 - 1 km³·yr exposure in 2009
- Analysis of IceCube data already well underway
 - Some IceCube22 results ready now and many more will be available soon