Results from the CDMS 5-tower Experiment at Soudan Underground Laboratory

Jonghee Yoo Fermilab

TeV Particle Astrophysics 27th September 2008 IHEP Beijing China

Outline

- Introduction
- CDMS WIMP Search
- CDMS Axion Search
- Summary

Sudan ?

The Missing Components in the Universe

- We know the Dark Matter is stable / non-baryonic / non-relativistic / interact gravitationally
- We don't know what it actually is mass / coupling / spin / composition / distribution in the Universe ...
- Cosmology suggests to probe EW scale $\Omega_{\rm DM} \sim < \sigma_{\rm A} {\rm v} {\rm >}^{-1}$ $\sigma_{\rm A} = \alpha^2/{\rm M^2}_{\rm EW}$
- SUSY model provides electroweak scale stable neutral particle : LSP
- However the Dark Matter is not necessarily a SUSY particle.

L. Roszkowski

Direct Detection of WIMP

CDMS

WIMP Detection Strategy of CDMS

- Direct detection of WIMP signal
- Nucleus recoil by elastic scattering
- Read out phonons from recoil together with ionization signal

Weakly Interacting

WIMP mean free path in Ge ~ 10¹⁰m The event will single scatter

Interaction Rate ∝A²

Use both Ge(73) and Si(28) targets R(Ge/Si) = ~7

CDMS Detector

CDMS Detector Readout

Gamma Background

Electron Background

100

600

time[usec]

Neutron Background : Cosmogenic

Stanford

- 2001-2002 operation
- 12m underground (50 μ /sec/m²)
- Single Tower (4Ge + 2Si detectors)
- 28 kg-days detector exposure
- 20 nuclear recoil events

<u>Soudan</u>

- 2003 operation
- 780m underground (0.004 μ/sec/m²)
- Single Tower (4Ge + 2Si detectors)
- 19 kg-days detector exposure
- 1 nuclear recoil events (?)

Experimental Setup in the Soudan Mine

Five Tower Runs

30 ZIPs (2 Towers + 3 new) 4.75 kg Ge, 1.1 kg Si

Low Background Towers

Newer Towers have 2-3X lower BG from Rn Cryogenics

~6 months of stable base temperature Outstanding operation management Improved DAQ

10X Faster (100 Hz) calibration speed GPS time record for NuMI event veto Online & Offline data quality monitoring <u>New Analysis Pipeline</u>

Huge calibration sample (4TB, 60M events) Data processing at FermiGrid

Detector Livetime (Ge)

R123 (2006.10.21~2007.03.21) 430kg-d R124 (2007.04.20~2007.07.16) 224kg-d R125 (2007.07/21~2008.01.09) 465kg-d R126 (2008.01.17~2008.05.02) 271kg-d

Real Time Event Monitor

TEVPA08, JONGHEE YOO (FERMILAB)

17

Position Resolution

Photon Calibration with ¹³³Ba

- Ba source (4 uCi), 60M events are collected during the period
- 100Hz detector read out performance
- Ba calibration gamma peak (356 keV) is used for absolute energy calibration

Neutron Calibration with ²⁵²Cf

Nuclear recoils in Ge detector

Nuclear recoils in Si detector

Excellent agreement between data and Monte Carlo 100K of neutron events are used to evaluate WIMP acceptance

10.4 keV Gamma

Neutron capture into ⁷⁰Ge during the Cf calibration Excited ⁷¹Ge emits gammas : 10.4 keV (t_{1/2}=11.4 days)

Very useful bulk gamma calibration source in the detector

Demonstrate ~ 5% of energy resolution in the region of interest : 10~100 [keV]

Blind Analysis

All Cuts set frozen before looking at the signal region

- Data Reconstruction Quality Cuts
- Data Quality Cuts
- Vetos : Muon veto, NuMI beam
- Event Selection
 - Charge energy threshold
 - Fiducial Volume (~30%)
 - Nuclear Recoil Selection
 - Surface Beta Rejection (~30%)

CDMS Dark Matter Search Result

- Gamma BG > 10⁶ rejection power
- Neutron BG less than 0.2 event
- Electron BG less than 0.6 event
- Zero-Background
- Null Observation
- Effective Exposure : 121.3 kg-day

 $\frac{\text{CDMS Combined (@60GeV)}}{\sigma = 4.6 \text{ x } 10^{-44} \text{cm}^2 (90\% \text{CL})}$

Axion Search

Axions

- Strong CP problem in QCD : null-observation of the neutron dipole moment
- Peccei-Quinn U(1) Symmetry breaking : Pseudo-Goldstone boson
- Invisible Axion Model : J.E.Kim

$$L_{\text{int}} = g_{a\gamma\gamma} a F_{\mu\nu} F^{\mu\nu} + i g_{aee} a \bar{\Psi}_e \gamma^5 \Psi_e + \dots$$

Axion Models

$$g_{a\gamma\gamma} = \frac{\alpha}{2\pi} \left(\frac{E}{N} - \frac{2}{3} \frac{4+z}{1+z} \right) \frac{1+z}{z^{1/2}} \frac{m_a}{m_\pi f_\pi}, \quad z = m_u / m_d = 0.56$$

Axio-electric coupling : gaee

- Relic Axions (?)
- Probe DAMA allowed parameter space

Axion Detection Principle

Solar Axion : g_{ayy} coupling

Axion-photon conversion : Primakoff effect

$$g_{a\gamma\gamma} = 10^{-8} GeV^{-1}, k \approx keV, q \approx keV, Z \approx 100$$

$$\sigma \approx 10^{-43} cm^2 !!$$

Crystal and Bragg Scattering

Coherent scattering of an axion in a crystal

$$\begin{split} R(E) &= \int 2c \frac{d^3 q}{q^2} \cdot \frac{d\Phi}{dE} \cdot \left[\frac{g_{a\gamma\gamma}^2}{16\pi^2} |F(\vec{q})|^2 \sin^2(2\theta)\right] \\ F(\vec{q}) &= k^2 \int d^3 x \; \phi(\vec{x}) e^{i\vec{q}\cdot\vec{x}} \\ \phi(\vec{x}) &= \sum_i \phi_i(\vec{x}) = \sum_i \frac{Ze}{4\pi |\vec{x} - \vec{x}_i|} e^{-\frac{|\vec{x} - \vec{x}_i|}{r}} = \sum_G \; n_G e^{i\vec{G}\cdot\vec{x}} \end{split}$$

Bragg condition

 λ = wavelength of the characteristic x-rays

$$E_a = \hbar c \frac{|\vec{G}|^2}{2\hat{u} \cdot \vec{G}}$$

Direction of the CDMS Cavern

• Amazing collaboration among the CDMS, NuMI/MINOS and old mine crews

Direction of the crystal plane

Expected Solar Axion Event Rate

Very detailed calculations are involved

- Seasonal variation of the solar flux
- The height of the Sun changes in seasons
- Detector energy resolutions
- Systematic uncertainty of the detector direction
- Detector livetime information

R123 :2006.10.21~2007.3.21, R124:2007.4.20~2007.7.16

200 CPUs x 2 weeks @FermiGrid

Expected Solar Axion Event Rate

Background Rate and Efficiencies

- Electron recoil events
- Within fiducial volume
- Single scatter events
- Detection efficiency : 30%~70% (detector dependent)

CDMS Low Energy Gammas

The First Solar Axion Limit from CDMS

Summary

- We still have zero background experiment for WIMP search It is the only direct detection experiment with less than 1 background
- There are no WIMPs above $\sigma(SI) = 4.6 \times 10^{-44} \text{ cm}^2 (90\% \text{CL}@60 \text{GeV})$ It is the world best upper bound above 42 GeV
- A preliminary CDMS limit of axio-electric coupling is presented
 Best direct experimental limit above 2 keV of axion mass (g_{aee} < 2e-12)
 Systematic uncertainty and background checks are underway
- A preliminary CDMS solar axion search limit is presented
 - → First precise measure of absolute direction of the crystal in the mine
 - → Most precise limit above 0.5 eV of axion mass (g_{ayy} < 2.4e-9 GeV⁻¹)
 - → Systematic uncertainty check is underway

For review of other crystal style detectors : see Talk by Johannes Blumer (Session5)

CDMS-II Collaboration

Brown University

M.J. Attisha, R.J. Gaitskell

Case Western Reserve University

D.S. Akerib, C. Bailey, P. Brusov, M.R. Dragowsky, D.D.Driscoll, D. Grant, R. Hennings-Yeomans, S.Kamat, T.A. Perera, R.W.Schnee, G.Wang

California Institute of Technology

S.Golwala, Z.Ahmed

Fermi National Accelerator Laboratory

D.A. Bauer, M.B. Crisler, R. Dixon, F. DeJongh, D. Holmgren, L. Hsu, J.Hall, E.Ramberg, J. Yoo

Lawrence Berkeley National Laboratory

R. McDonald, R.R. Ross, A. Smith

Massachusetts Institute of Technology

E.Figueroa-Feliciano, S.Hertel, K.McCarthy

National Institute for Standards and Technology

K. Irwin

Santa Clara University

B.A. Young

Stanford University

P.L. Brink, B. Cabrera, C.L. Chang, J. Cooley, R.W. Ogburn, M. Pyle, S.Yellin

University of California, Berkeley

M. Daal, J. Filippini, A. Lu, V. Mandic, P.Meunier, N. Mirabolfathi, B. Sadoulet, D.N. Seitz, B. Serfass, K.M. Sundqvist

University of California, Santa Barbara

R. Bunker, D.O. Caldwell, R. Ferril, R. Mahapatra, H. Nelson, J. Sander,

University of Colorado at Denver and Health Sciences Center

M. E. Huber

University of Florida

T. Saab, S.Leclercq

University of Minnesota

P. Cushman, L. Duong, A. Reisetter, M.Fritts, X.Qiu

University of Zurich

S.Arrenberg, L.Baudis, T.Bruch, M.Tarka

Queen's University

W.Rau