The Hunt for the Sources of the Galactic Cosmic Rays

A multi-messenger approach

Alexander Kappes UW-Madison

4th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008

Energetics of Galactic CRs and source candidates

The missing PeVatrons and the Milagro skymap

Neutrino fluxes from Galactic CR source candidates

- Galactic component:
 - GeV-PeV
 - $\rho_{\rm E} \approx 10^{\text{-12}} \, \text{erg cm}^{\text{-3}}$ # $\approx 4 \times 10^{\text{-14}} \, \text{cm}^{\text{-3}}$
 - similar to energy density in light and magnetic field
- Transition: somewhere between 10⁷ and 10⁹ GeV
- Extra-Galactic component:
 - > EeV
 - ~10⁻¹⁹ erg cm⁻³

Multi-messenger Astronomy: Cosmic Rays, γ-Rays and Neutrinos

- Even after 100 years sources of (Galactic) cosmic rays (CRs) unknown (CRs not back-traceable due to Galactic magnetic field)
- Multi-messenger astronomy is key:

Flux ratios (for *E*⁻²): (p+p)
$$\phi(v) \approx \frac{1}{2}\phi(\gamma)$$
 (p+ γ) $\phi(v) \approx \frac{1}{8}\phi(\gamma)$

Estimate of Gamma Flux from pp Interactions

- Steady Galactic CR density (~10⁻¹² erg cm⁻³) requires 10⁴¹ erg s⁻¹ (finite CR containment time)
- Corresponds to release of 10⁵⁰ erg in CRs every 30 years
- Emissivity in γ-rays for interaction of CRs with interstellar medium:

$$Q_{\gamma}(>1 TeV) \approx c \qquad n_{CR} \qquad \lambda_{pp}^{-1} \qquad \left(\frac{E_{\pi}}{E_{p}}\right) \approx 10^{-29} cm^{-3} s^{-1} \left(\frac{n_{IM}}{cm^{-3}}\right)$$
$$\approx 4 \times 10^{-14} cm^{-3} \qquad (n_{IM} \sigma_{pp}) \qquad \text{for } E^{2}; \approx 0.2$$
$$\sigma_{pp} \approx 40 \text{ mb}$$
$$L_{\gamma}(>1 TeV) \approx Q_{\gamma} \qquad W \approx 10^{33} s^{-1} \left(\frac{W}{10^{50} erg}\right)$$
$$\text{energy released in CRs} \approx 10^{-12} \text{ erg cm}^{-3} \qquad \text{f. #alzen, arXiv:0809.1874}$$

Estimate of Gamma Flux from pp Interactions cont'd

$$E\frac{dN_{\gamma}}{dE}(>1TeV) = \frac{L_{\gamma}}{4\pi d^2} \approx 10^{-12} - 10^{-11}cm^{-2}s^{-1}\left(\frac{W}{10^{50}erg}\right)\left(\frac{n_{IM}}{cm^{-3}}\right)\left(\frac{d}{kpc}\right)^{-2}$$

The sources of the Galactic CR should have fluxes visible to current γ-ray detector (in particular, they have to show up in the Milagro sky map)

Source candidates with known TeV γ**-ray emission**:

- **Supernovae** (release ~10⁵¹ erg every ~30 years):
 - $-n_{\rm IM}$ 100 1000 cm⁻³ in star-forming regions where SN typically occur
 - why don't we see more SNe in TeV, why have all SNe cutoffs << 100 TeV?
- Binaries: only few observed up to now; again cutoffs << 100 TeV (absorption?) not visible in Milagro map
- Pulsar wind nebula: thought to accelerate (mainly) electrons
- Maybe something **unknown**!?

The Missing PeVatrons

- SNRs generally considered as best candidates for Galactic cosmic ray accelerators
- But no SNR γ spectrum extends above a few 10 TeV ("knee" corresponds to ~300 TeV)
- Possible reason:
 "Direct" high energy γ-ray emission only in first few hundred years
- Detection still possible by observing secondary γ-rays produced in nearby clouds
- Milagro-like experiments better suited than Cherenkov telescopes

2007 Milagro Sky Survey At 12 TeV

- Several sources along Galactic plane
- Large accumulation in the Cygnus region
- Additional small "cluster" at I = 40°

MGRO J1908+06

Milagro:

- Spectrum extends up to 100 TeV !
- Strong indicator for proton acceleration in this source

H.E.S.S.:

- E⁻² spectrum without cutoff indication
- Flux @ 1TeV: 3.2×10⁻¹² cm⁻² s⁻¹ TeV⁻¹ (#.E.S.S. Coll., ICRC'07 proceedings)

MGRO J2031+41

Milagro:

 Flux @ 1TeV for E⁻²: 2.4×10⁻¹² cm⁻² s⁻¹ TeV⁻¹ (Milagro Coll., ApJ 658:L33, 2007)

MAGIC:

- E⁻² spectrum
- Flux @ 1TeV: 0.45×10⁻¹² cm⁻² s⁻¹ TeV⁻¹ (MAGIC Coll., ApJ 675:L25, 2008)
- Lower flux probably due to high photon background in Cygnus region

MGRO J2019+37

Milagro:

 Flux @ 1TeV for E⁻²: 3.5×10⁻¹² cm⁻² s⁻¹ TeV⁻¹ (Milagro Coll., ApJ 658:L33, 2007)

VERITAS:

- Not seen in first observation: $F_{\gamma} < 30 \text{ mCrab} (99\% \text{ C.L.})$
 - \Rightarrow consistency with Milagro requires Γ < 2.2

(VERITAS Coll., ICRC'07 proceedings)

The Role of Neutrino Telescopes

- Several γ-ray sources with hard spectra
- Photon production ambiguous
- Air-shower array currently only in Northern Hemisphere
- Cherenkov telescopes only small field of view (few deg²)
 - cover only small part of sky (at a time)
 - large photon background in star-forming region (e.g. Cygnus) can hide sources
- Neutrinos unambiguous sign for hadronic acceleration
- Neutrino telescope properties very similar to air shower arrays
 - "all sky" sensitivity
 - increasing sensitivity with energy (fast decreasing background)
 - angular resolution $\mathcal{O}(1^\circ)$

Halzen etal, Phys.Rev. D78, 063004 (2008)

- E^{-2} with Milagro normalization assumed (MGRO J1908+06 index = 2.1)
- v spectrum cutoff @ 180 TeV

IceCube with 80 strings

- Source size and detector angular + energy resolution taken into account
- Milagro measurements favor lower sensitivity curve (dashed line)
- Individual sources probably hard to detect for IceCube

Significance for stacked Sources

- p-value = 10⁻⁴ after 5 years but large error band (not shown)
- Optimal threshold @ 30–40 TeV (determined by loss of signal events)

AMANDA II

- Search for muon neutrinos in 6 Milagro source regions in AMANDA II 7 year data set (3.8 years livetime)
- Per-source flux sensitivity improved by a factor of 4 compared to fixed-point search for any of the six sources

Shown by J. Braun @ COSMOS'08

Simulated Neutrino Skymap IC80 (5 years)

Conclusions

- Straight forward calculations show that sources of Galactic CR should show up in Milagro sky-map
- Sources might not be (easily) visible for Cherenkov telescopes
 - largest energy density might be at several 10 TeV (interactions of CR in molecular clouds)
 - large photon background in SN regions, e.g. Cygnus
- Several Milagro sources show indications for hard E⁻² spectra with one (MGRO J1908+06) possibly extending to at least 100 TeV
- Hard to decide from γ-ray signal alone whether γ-ray sources are CR sources
- Neutrino telescopes can unambiguously identify sources of cosmic rays
- IceCube will be able to detect stacked Milagro sources after several years (individual sources difficult)

Backup Slides

TeV Gamma-Ray Sky Map

Simulated Neutrino Skymaps IC80 (5 years)

