

Multi-wavelength observation of the 2006 TeV active state of PKS2155-304

Andreas Zech (OBSPM / LUTH) on behalf of the **H.E.S.S. Collaboration** TeVPA 08 Conference Beijing, September 2008

DEDE

Laboratoire de l'Univers et de ses Théories

Outline

Introduction: Observation of AGN with H.E.S.S.

The 2006 VHE active state of PKS2155-304 and multi-wavelength campaign

SSC modelling of PKS2155-304 in 2006

Conclusions

Introduction: Observation of AGN with H.E.S.S.

The H.E.S.S. Cherenkov Telescope Array

currently four Imaging Air Cherenkov Telescopes

- effective mirror surface 107 m², camera f.o.v. 5°
- 960 PMT per camera, f.o.v. 0.16°
- E thresh ~ 100 GeV

H.E.S.S.-II is now under construction

- effective mirror surface
 600 m², camera f.o.v. 3.5°
- 2048 PMT per camera, f.o.v. 0.08°
- E thresh ~ 50 GeV
 - => detect lower energies
 - -> less absorption by EBL
 - -> reach higher redshifts

Upper limits on AGN observed by H.E.S.S.

Object^a	T [hrs]	$\mathbf{Z}_{\mathrm{obs}}$ $[^{\circ}]$	On	Off	Norm	Excess	${\mathop{\rm S}}_{[\sigma]}$	${ m E_{th}} [{ m GeV}]$	${\substack{I(>E_{\rm th})\\[10^{-12}~{\rm cm}^{-2}~{\rm s}^{-1}]}$	$\overset{\mathrm{Crab}}{\%}$	$\mathrm{P}(\chi^2)$
Blazars											
${ m III}{ m Zw}2^{ m U}$	4.9	38	169	1801	0.0916	4	0.3	430	$<\!\!2.14$	$<\!2.7$	0.19
$\mathrm{BWE0210{+}116^{U}}$	6.0	43	176	3752	0.0504	-13	-0.9	530	< 0.72	< 1.2	0.74
$1 ext{ES} 0323 + 022$	7.2	27	321	3302	0.0932	13	0.7	300	$<\!\!2.52$	< 1.9	0.59
$ m PKS \ 0521{-}365^{U}$	3.1	26	180	1818	0.0928	11	0.8	310	< 5.40	< 4.2	0.45
$3\mathrm{C}273^{\mathrm{U}}$	16.5	29	848	8678	0.0932	39	1.3	300	<1.97	<1.4	0.89
$3\mathrm{C}279^{\mathrm{U}}$	2.0	26	100	1012	0.0942	5	0.5	300	<3.98	<2.9	0.44
RBS 1888	2.4	15	184	1625	0.0949	30	2.2	240	< 9.26	<4.9	0.39
${ m HS}2250{+}1926^{ m U}$	17.5	44	597	6536	0.0923	-6	-0.2	590	< 0.45	< 0.9	0.58
PKS2316-423	4.1	20	299	2910	0.0929	29	1.6	270	<4.74	<3.0	0.58
$1 ext{ES} 2343 - 151^{ ext{U}}$	8.6	17	557	6286	0.0911	-16	-0.6	230	$<\!\!2.45$	< 1.2	0.67
Non-blazar											
NGC 1068	1.8	29	75	687	0.0955	9	1.1	330	< 5.76	<4.9	0.47
Pictor A	7.9	31	397	4501	0.0932	-23	-1.1	320	$<\!2.45$	$<\!2.0$	0.54
$ m PKS0558{-}504^{U}$	8.3	28	426	4740	0.0929	-14	-0.7	310	<2.38	<1.8	0.80
NGC 7469	3.4	34	98	1234	0.0909	-14	-1.3	330	<1.38	< 1.2	0.59

^a The superscript U marks the eight VHE upper limits (99.9% c.l.) that are the most constraining ever published for the corresponding objects. Aharonian et al. 2008, A&A 478, 387-393

+ upper limits on two known VHE AGN at low altitude (1ES 1218+304 and Mkn421)

AGN detected by H.E.S.S.

Source Type		z	discovery	reference			
RGBJ0152+017	BLLac (HBL)	0.080	*	Aharonian et al 2008, A&A 481, L103			
PKS0548-322	BLLac (HBL)	0.069	*	Superina et al. 2007, Proc. of ICRC '07			
1ES0229+200	BLLac (HBL)	0.139	*	Aharonianet al 2007, A&A 475, L9			
1ES1101-232	BLLac (HBL)	0.186	*	Aharonianet al 2007, A&A 470, 475			
1ES0347-121	BLLac (HBL)	0.188	*	Aharonianet al 2007, A&A 473, L25			
PG1553+113	BLLac (HBL)	0.360 (?)	*	Aharonianet al 2006, A&A 448, L19			
M87	AGN (FR I)	0.0042		Aharonianet al 2006, Science 314, 1424			
H2356-309	BLLac (HBL)	0.165	*	Aharonianet al 2006, A&A 455, 461			
MKN421	BLLac (HBL)	0.030		Aharonianet al 2005, A&A 437, 95			
PKS2005-489	BLLac (HBL)	0.071	*	Aharonianet al 2005, A&A 436, L17			
PKS2155-304	BLLac (HBL)	0.116		Aharonian et al 2005, A&A 430, 865;			

thanks to: L. Gérard

Previous observations of PKS 2155-304 by H.E.S.S.

- VHE discovery by the Durham group (Mark 6 telescope) in 1999
- 2003 MWL campaign (*Aharonian et al. 2005, A&A 430, 865 & 442, 895, ->figures*)

The 2006 TeV high state of PKS 2155-304 and multi-wavelength campaign

MWL observations of PKS 2155-304, A. Zech for H.E.S.S. at TeVPA 08

Two exceptional VHE flares

Multi-wavelength data

MWL observations of PKS 2155-304, A. Zech for H.E.S.S. at TeVPA 08

VHE / X-ray / optical band

A closer look at VHE/X-ray correlation

very steep correlation between X-ray and VHE in the decaying phase => serious problem for one-zone SSC models

VHE vs. X-ray flux for the night of the second flare (left) and for the whole 2006 campaign (right).

MWL observations of PKS 2155-304, A. Zech for H.E.S.S. at TeVPA 08

12

Optical light curve (Bronberg Observatory)

Radio light curve

F [Jy]

F [Jy]

Synchrotron Self-Compton (SSC) modelling of PKS2155-304

Stationary SSC modelling

based on Katarzynski, Sol, Kus (2001), to be published in the upcoming MWL paper

Date (MJD)	(2003)	53945	53946	53947	53948	53949	53950
Figure	see Aharonian et al. (2005b)	9	10	-	-	11	-
δ_b	25	25	60	25	25	25	25
B [G]	0.25	0.25	0.10	0.25	0.25	0.25	0.25
r_b [cm]	1.5×10^{15}	2.25×10^{15}	2.3×10^{15}	1.7×10^{15}	2.4×10^{15}	3.5×10^{15}	3.1×10^{15}
$K_1 [{\rm cm}^{-3}]$	2.0×10^{3}	2.82×10^{3}	6.30×10^{4}	6.86×10^{3}	2.44×10^{3}	2.25×10^{3}	1.13×10^{3}

Time-dependent model 1

• dynamic 2-zone SSC model

based on *Chiaberge & Ghisellini (2002) MNRAS 306, 3, p. 551ff. (->figure)*, with modifications described in *Katarzynski et al. (2008), MNRAS,* application to 2nd flare to be published in the *upcoming MWL paper*

- applied to 2nd flare night:
 - a large source dominates X-ray
 - a small, dense source dominates VHE
- source development:
 - source = homogeneous slices of area RxR and length r << R,
 - Injection of a power law electron energy spectrum with index 2 (e.g. shock wave)
 - radiative cooling: synchrotron, IC
- treats external light-crossing time effect
 broken power law in synchrotron spectrum
- absorption by pair production in source

cβ_s∆t

Time-dependent SSC modelling of the 2nd flare (model 1)

Time-dependent SSC modelling of the 2nd flare (model 1, zoom on the VHE flare)

Time-dependent model 2

• dynamic 2-zone SSC model

based on *Katarzynski, Sol, Kus (2003)* A&A 410, 101 (->figure), see also J.P. Lenain et al. (for H.E.S.S.), Proc. of Gamma 08, update to be published in the upcoming MWL paper

more realistic source description:

- Conical jet (cylindrical slices): only synchrotron emission -> X-ray peak
- Blob-in-jet: dense region inside jet -> synchrotron + IC emission
- Injection of electron energy spectrum
- Radiative cooling (synchrotron + IC), adiabatic cooling
- treats radiative transfer (pair production, electron absorption) between slices

Time-dependent SSC modelling of the 2nd flare (model 2)

Time-dependent SSC modelling of the 2nd flare (model 2)

Conclusions

- very rich data-set stresses the importance of coordinated MWL campaigns
- stationary one-zone SSC model explains average nightly behaviour
- steep correlation VHE/X-ray during the second flare night poses a serious problem for one-zone SSC models at intra-night scales
- time-dependent two-zone SSC models can explain the evolution of VHE and X-rays during the night of the 2nd flare
- => A third model has been developped by a group within the H.E.S.S. collaboration: stratified jet approach (see *T. Boutelier, G. Henri, P-O Petrucci, MNRAS Letters (2008) MN-08-0848-L.R1, astro-ph/0807.4998* and *upcoming MWL paper*)

Special Thanks

- special involvement in the PKS 2155-304 MWL campaign and analysis:
 W. Benbow, C. Boisson, R. Bühler, L. Costamante, G. Dubus, B. Giebels, O. de Jager, S. Pita, M. Punch, M. Raue, H. Sol, G. Superina, F. Volpe
- SSC modelling: C. Boisson, T. Boutelier, G. Henri, K. Katarzynski, J.-P. Lenain, H. Sol
- radio data analysis: P. Colom, N. Coudreau, P. Edwards, J.-M. Martin, L. Venter
- Bronberg optical data: B. Monard Swift data: L. Foschini
- the whole H.E.S.S. collaboration and the TeVPA08 organisers

MWL observations of PKS 2155-304, A. Zech for H.E.S.S. at TeVPA 08