Deducing UHECR sources, guided by observations

Glennys R. Farrar Center for Cosmology and Particle Physics New York University

Research supported by NSF, NYU and international agencies

Auger AGN correlation produces a big puzzle

- Acceleration powered by a supermassive BH *must* be accompanied by radiation:
 - from the accretion disk:
 - $L_{bol} \ge -10^{45} E_{20}^2 \text{ erg/s}$ - probably more from the jet

UHECR acceleration Illustrative case – internal shocks

Accreting Supermassive Black Hole

Inhomogenieties in jet

R

Sept. 18, 2008

Theoretical Challenge

GRF + A. Gruzinov "AGN flares and Cosmic Ray Bursts", astro-ph:0802.1074

Requirements of UHECR acceleration and avoidance of energy losses are *almost* mutually exclusive. E.g., protons accelerated in internal shocks (Γ, R, B)

To confine UHECRs:

To avoid synchrotron losses:

Isotropic equivalent Photon Counterpart: $RB \gtrsim 3 \times 10^{17} \, \Gamma^{-1} \, E_{20}$ es: $B \lesssim \Gamma^2 \, E_{20}^{-2}$.

To avoid photopion losses: $RB^2 \lesssim 10^{17} E_{20}^{-1} \Gamma$

$$L_{\rm bol} \sim \frac{1}{6} c \Gamma^4 B^2 R^2 \gtrsim 10^{45} \Gamma^2 E_{20}^2 \, {\rm erg/s}$$

$$\nu L_{\nu} \gtrsim 10^{44} \Gamma^2 E_{20}^2, \quad 0.01 \ \Gamma B \ \mathrm{eV} \lesssim h\nu \lesssim 10 \ \Gamma \ \mathrm{MeV}$$

Sept. 18, 2008

Observational Constraints

Conservative:

· CR energy injection rate:

Γ_{lnE}> 0.7-20 10⁴⁴ erg Mpc⁻³ yr⁻¹

- source density: n_{src} > 3 10⁻⁵ Mpc⁻³
- Arrival time delay: $\tau_{CR} \sim 10^5 \text{ yr}$

Additional:

- \cdot Auger Correlation with AGN
- · Properties of the "Ursa Major" UHECR cluster

Auger UHECR correlation with Veron-Cetty Veron galaxies

- · VCV catalog -- mostly AGNs, but not pure or complete
- L_{bol}: Most correlations are with too-weak AGNs (Zaw, Farrar, Greene 08)
- Morphology of correlated galaxies: few have jets (Moskalenko, Stawarz, Porter, Cheung 08)
- A statistical fluke? *a priori* chance probability < 1%
- VCV galaxies just tracers? NO!

Problems with Veron-Cetty Veron AGN Catalog (Plots by A. Berlind)

Veron-Cetty — A compendium of all reported *optically identified* AGNs Selection is non-uniform both spatially and in flux limits.

Upper left plot: SDSS is the "deepest" of the large AGN-reporting surveys. Its footprint clearly shows in the V-CV catalog.

Upper right histograms: Reduced sensitivity for $|b| < 10^{\circ}$ due to dust in Galactic plane is evident in 2MASSzK=11.25^{*} galaxies (left) and V-CV AGNs (right). Bins have equal areas so distribution would be flat for a uniform population; variation for $|b| > 10^{\circ}$ is a manifestation of the "cosmic variance" in local large scale structure. (* courtesy J. Huchra.)

Lower right scatter plots: Absolute magnitude vs redshift for (left) galaxies with z < 0.018 from 2MASSz and (right) AGNs with z < 0.018 from V-C. The sharp arc for 2MASS reflects its uniform cut in flux while only a hint of the arc characteristic of a flux-limited sample is sept. in 18, 2008 G. R. Fat

UHECR-VCV correlation from Large Scale Structure?

Sept. 18, 2008

Subsampling 2MASS Galaxies Farrar, Berlind, Zaw (to appear soon)

- VCV: 694 galaxies |b|>10°, z<0.024
 2MASS Redshift SurveyK=11.25

 11,851 galaxies |b|>10°, z<0.024

 Subsample 2MRS to mock VCV:

 1000 mock catalogs with 694 galaxies
 [redshift distribution as VCV]
 - [volume limited]

1000 mocks, scanned like Auger Farrar, Berlind, Zaw to appear 0.1 fraction VC \ 0.08 of trials Fraction of Samples 0.0 90.0 90 90% VCV 10% 2MRS Isotropic 100% 2MRS 0.02 <u><u><u>q</u></u></u> -5 -3 -8 -6 -7 -4 -2 0 log(P)

CONCLUSION: VCV galaxies are not "just tracers"

Sept. 18, 2008

Standard Scenarios don't work!

- Powerful AGN jets, radio galaxies: too few that are powerful enough
 - [Correlated AGNs mostly weak, MSPC08, ZFG08]
- · GRB (Waxman, 95): local rate too low

 $n = (0.05 - 0.27) \text{ Gpc}^{-3} \text{ yr}^{-1}$ (Guetta Piran 06)

- Too few visible sources $(n_{src} = n \tau_{CR})$
- Too little UHECR power, unless L_{CR} > 100 L_{gamma}
- [Don't explain AGN correlation]

Ursa Major Cluster

- \cdot 4 events in AGASA + HiRes, in ~ 3000 km² sr yr
- Chance probability: 2 10⁻³
- SDSS => foreground empty!
 - Magnetic deflection low
 - "confusion" problem reduced

SDSS: GRF, Berlind, Hogg 06

Spectrum of UM Cluster

 Observed Spectrum of an individual source allows to discriminate bursting from continuous:

12

10

- Continuous source: spectrum same as at source (modulo GZK)
- Bursting source: observed spectrum is peaked:
- Ursa Major events:
 - Hi-E sample (37 events)
 - 4 in cluster: 46, 48, 50, 70 EeV (Berezinsky renormalization)
 - Lo-E sample (234 events)
 0 or 1 in cluster.
 - 1 in 234 same as 4 in 37: 0.2% probability
- · => UM source is bursting, not continuous

G. R. Farrar TeVPA08

150

100

200

UHECR production in Giant AGN flares (GRF & Andrei Gruzinov, 2008)

· Black Hole tidal disruption of a passing star

- Occurs every 10⁴-10⁵ yr (Magorrian & Tremaine 99)
- In AGN, produces a Super-Eddington jet
- Duration ~ debris return time, ~1 month
- event energy: ~0.01 M_{sun} > 10⁵² ergs
- Easily achieves L > 10⁴⁵ erg/s required for UHECR acceleration
- Correct prediction for UHECR flux and density of sources

Consequences of Giant AGN Flare scenario

UHECRs:

- Accretion disk needed to produce a flare => source is a weak AGN most of the time. [Auger AGN correlation]
- Little relationship between observed AGN luminosity or type, and its flux in UHECRs. [as in Auger correlated galaxies]
- Events from a single source display bursting spectrum [as observed in Ursa Major cluster]
- Composition may include heavy nuclei
- Predicts new class of optical and soft-gamma-ray bursts:
 - SDSS: Search of archival data underway
 - Fermi/GLAST: should see many events per year
 - N.b., photon bursts arrive $\sim 10^5$ years before UHECRs!

Predicted Photon Flares

Spectrum roughly flat

 $\nu L_{\nu} \gtrsim 10^{44} \Gamma^2 E_{20}^2$, $0.01 \ \Gamma B \ \mathrm{eV} \lesssim h\nu \lesssim 10 \ \Gamma \ \mathrm{MeV}$

 $B \sim 3$, $\Gamma > 3 = >$ spectral range ~0.1 eV to ~30 MeV

- Duration: ~ 30 days (shorter if disk instability)
- Density of flaring objects:

$$n_{\rm GAF} \approx 3 \times 10^{-7} \,{\rm Mpc}^{-3} \left(\frac{\Delta lnE}{20} \, \frac{\Gamma_{44.6}}{1} \frac{10^{45}}{f_{\rm CR}L_{\rm GAF}} \right)$$

· Annual Rate in GLAST/Fermi etc (in LAT range?)

$$N_{\rm GAF,yr} \approx 30 \, \frac{b_{\gamma}}{0.1} \left(\frac{\nu L_{\nu,\rm GAF}}{10^{45}} \frac{10^{-9}}{(\nu F_{\nu})_{\rm sen}} \right)^{\frac{3}{2}} t_d^{-\frac{1}{4}} \frac{n_{\rm GAF}}{3 \times 10^{-7}}$$

Sept. 18, 2008

Typical Parameters

- Stellar tidal disruption $M_{BH} = 3 \ 10^6 \ M_{sun}$
- UHECR acceleration constraints satisfied with B = 3 G, Γ = 3, R = 3 10¹⁶ cm
- Isotropic Equivalent Jet Luminosity: 10⁴⁶ erg/s
- Duration (EvansKochanek89, Ulmer99) $\sim 3 \ 10^6 \text{ s} = >$

 $E_{tot} \sim 3 \ 10^{52} \text{ erg} \Rightarrow \text{CORRECT } \Gamma_{\text{InF}}^{\text{UHECR}}$

- · $\Gamma = 3 \Rightarrow$ beaming factor 0.1 $\Rightarrow \rightarrow 400$ sources in Auger for
- Photon Counterpart:
 - $vL_v \sim 10^{45} \text{ erg/s}, \quad 0.1 \text{ eV} < hv < 30 \text{ MeV}$
- · Density of flares ~ 3 10^{-7} -- look in SDSS
- Swift expects 10⁻⁴ per year
- · Should be seen by GLAST and next-generation surveys.

EXCITING TIMES!

- Next few years of Auger South:
 - composition (p?, Fe?,...)
 - UHE particle physics
 - Begin to establish where UHECRs are made
- Telescope Array: Collect more Ursa Major UHECRs
- Auger North:
 - factor ~10 greater aperture
 - Individual Sources (spectrum, magnetic fields,...)
- · GLAST/Fermi, SDSS, Quest, ... :
 - Detect predicted Giant AGN bursts ???