Hadronic Interaction Models: Collider - CR connection

S. Ostapchenko

Norwegian University of Science and Technology (NTNU)

TeVPA-2008

Beijing, September 24-28, 2008

"Avoid models as much as you can!" "Important issues are INPUT OF REAL DATA ..." A. Watson

Hadronic MC generators - twofold purpose:

- interpretation of CR data
- bridge between collider & CR studies

EAS techniques & model requirements

High energy CR studies - via air shower (EAS) development Basic measured quantities:

- shower maximum position X_{\max}
 - mainly sensitive to $\sigma_{p-\mathrm{air}}^{\mathrm{inel}}$ ($\sigma_{p-\mathrm{air}}^{\mathrm{non-diffr}}$), $K_{p-\mathrm{air}}^{\mathrm{inel}}$
- number of charged particles at ground N_e
- number of muons at ground N_{μ}
 - mainly depends on $N_{\pi-\mathrm{air}}^{\mathrm{ch}}$

Energy dependence:

- $X_{\max}^p(E_0) \simeq \operatorname{const} + ER \cdot \lg E_0$
- $N_e^p(E_0) \sim E_0^{\alpha_e}, \ \alpha_e \simeq 1.1$
- $N^p_{\mu}(E_0) \sim E_0^{\alpha_{\mu}}, \ \alpha_{\mu} \simeq 0.9$

Projectile mass dependence - 'superposition' model:

- $X_{\max}^A(E_0) = X_{\max}^p(E_0/A) \simeq X_{\max}^p(E_0) ER \cdot \lg A$
- $N^{A}_{e/\mu}(E_0) = A \cdot N^{p}_{e/\mu}(E_0/A) \sim A^{1-\alpha_{e/\mu}} \cdot E_0^{\alpha_{e/\mu}},$
- \Rightarrow CR composition studies

Model requirements for cosmic ray applications

- cross section predictions
- . description of minimum bias hA- and AA-collisions
- $\bullet \Rightarrow$ importance of 'forward' region
- predictive power (no re-tuning possibilities)

Representative models:

- .SIBYLL (Engel, Gaisser, Lipary & Stanev): 'minijet'-type model
- . EPOS (Pierog & Werner): Reggeon approach + energy sharing
- QGSJET(-II) (Kalmykov & SO): Reggeon approach, 'enhanced' graphs

Same physics:

- .'soft' & 'hard' processes
- multiple scattering
- .'central' & peripheral collisions
- nonlinear effects (screening, saturation ...)

Differences: in the implementation, amount of input assumptions, etc. \Rightarrow in the predictions

High energy interactions: qualitative picture

Hadronic interactions - multiple scattering processes (parton cascades):

Single scattering:

- (a) 'soft' (all $|q^2| \sim p_t^2 < Q_0^2$, $Q_0 \sim 1 \text{ GeV}^2$) cascade
 - large effective area $(\Delta b^2 \sim 1/|q^2|)$
 - slow energy rise
 - \Rightarrow dominant at relatively low energies
- . (b) cascade of 'hard' partons (all $|q^2| \gg Q_0^2$)
 - small effective area
 - rapid energy rise

 \Rightarrow important at very high energies and small impact parameters

target

- . (c) 's emihard' scattering (some $|q^2| > Q_0^2$)
 - large effective area
 - rapid energy rise

 \Rightarrow dominates at high energies and over a wide *b*-range

Lessons:

- . 'soft' processes important (for peripheral & 'semihard' interactions) \Rightarrow nonperturbative treatment
- . 'hard' processes important (for 'central'/quasi-peripheral collisions)
- . high parton density reached over large phase volume
 - \Rightarrow nonlinear effects important

General model strategy:

- describe 'elementary' interactions (parton cascades)
 - scattering amplitude
 - hadronization procedure (conversion of partons into hadrons)
- . apply Reggeon approach to treat multiple scattering processes
- describe particle production as superposition of 'elementary' processes

'Elementary' interaction

Possible phenomenological approach - 'QCD-improved' Reggeon scheme:

- $\cdot Q_0^2$ cutoff between 'soft' and perturbative physics
- 'soft' interactions (all $|q^2|$ small $\Rightarrow \alpha_s(q^2) > 1$):
 - pQCD is inapplicable \Rightarrow Regge pole amplitude ('soft' Pomeron)
- 'semihard' processes ($|q^2| > Q_0^2 \Rightarrow \alpha_s(q^2) \ll 1$)

 - 'soft' Pomeron for $|p_t^2| < Q_0^2$ QCD parton ladder for $|p_t^2| > Q_0^2$

General interaction \Rightarrow 'general Pomeron':

• particle production: DGLAP cascade + string hadronization

Alternatively ('minijet' scheme): $Q_0^2 = Q_{\text{sat}}^2$ - saturation scale; no parton production @ $p_t < Q_0$

Gribov's reggeon calculus

General interaction - superposition of many 'elementary' processes:

Or (Abramovskii-Gribov-Kancheli cutting rules):

Non-linear effects

Large s, small b, large A:

- many partons closely packed
- $\centerdot \Rightarrow$ parton cascades overlap and interact with each other
- $\bullet \Rightarrow$ parton shadowing (slower rise of parton density)
- . saturation (maximal possible density reached)

Non-linear effects in QCD - interaction between parton ladders:

Model implementations

- .traditional (e.g., SIBYLL model):
 - $Q_0^2 = Q_{\rm sat}^2(s)$ parametrized saturation scale
- no parton production @ $p_t < Q_0$

actually, there exist parton production in the saturated region

- EPOS:
 - effective 'damping' of the amplitude (eikonal)
 - particle production in the 'saturation' region QGP treatment
 - still based on parametrizations...

.QGSJET-II - Pomeron approach, 'enhanced' graphs

Pomeron approach: non-linear effects \equiv Pomeron-Pomeron interactions • all order re-summation of arbitrary Pomeron 'nets' (SO, 2006)

• also 2-point 'loop' corrections (SO, 2008)

Basic assumptions:

- neglect saturation effects above a fixed Q_0^2 scale
- Pomeron-Pomeron coupling only at $|q|^2 < Q_0^2$
- $\bullet \Rightarrow$ only 'soft' Pomeron coupling
- . eikonal multi-Pomeron vertices

Final states \Rightarrow resummation of unitarity cuts

Example:

Simpliest contribution (single inelastic process):

Final results - Schwinger-Dyson recursive representations \Rightarrow easy implementation in a MC procedure QCD prospect: color glass condensate approach

Evident positive aspect: **QCD-based picture**

What diagrams are actually considered?

Significant progress reported but the evolution kernel is yet incomplete (figure from Levin & Lublinsky, 2005):

General final states - impossible without cut diagram resummation!

Expansion of the black disk (Kovner & Wiedermann, 2002):

- . well defined where Q_{sat} is well defined
- . dominated by emission of large dipoles otherwise
- $\bullet \Rightarrow$ violates Froissar bound!

To properly describe the evolution of the periphery

- . either use CGC / dipole approach with additional assumptions (Ferreiro, Iancu, Itakura & McLerran, 2002; Avsar, 2008)
- . or 'glue' it to a nonperturbative treatment

Both cases involve phenomenology

 \Rightarrow have to be proven competitive with presently used phenomenology

Models & EAS development: the knee and beyond

Grapes data analized with SIBYLL, QGSJET-II (*Gupta*, *ISVHECRI-08*): reasonable match with direct measurements

All-particle spectrum

Proton spectrum

- QGSJET01 \rightarrow QGSJET-II \Rightarrow improved agreement for proton spectra

Contemporary CR interaction models seem to work well up to 10¹⁸ eV

Example: $N_e - N_{\mu}$ correlation in QGSJET-II / KASCADE-Grande data (de Souza, ICRC-2007):

- data are 'bracketed' by the model predictions for p & Fe!

UHECR: model challenge

- angular correlation of Auger events with nearby AGNs \Rightarrow strongly supports proton primaries above 10¹⁹ eV
- contradicts the interpretation of Auger X_{max} data (Unger, ICRC-2007):

- present models indicate a 'mixed' composition (protons & nuclei)!

. contradiction with Auger muon data (Schmidt, ISVHECRI-08):

- $\langle N_{\mu}^{\text{Auger}}(10^{10} \, \text{GeV}) \rangle / N_{\mu}^{p}(\text{QGSJET-II}) = 1.62 + 0.20/-0.10$
- confirmed by 3(!) independent methods:
 - CIC (based on EAS 'universality')
 - 'hybrid' events
 - inclined showers

Figure 39: Bias-corrected $< X_{max} >$ in HiRes stereo data, after energy cuts. The χ^2 shown is not the result of a fit, but of a direct comparison with the QGSJET01 proton rail for the Gaussian-in-age parametrization.

Let's concentrate on Auger: can a 'conventional' model explain the data?

• enhanced (anti-)baryon production (Pierog, ISVHECRI-08)

• harder spectra of secondaries

• special treatment of 'remnants' \Rightarrow higher K_{inel} (from H. Drescher, 2008)

However:

• insufficient to resolve Auger muon puzzle (Schmidt, ISVHECRI-08): $\langle N_{\mu}^{\text{Auger}}(10^{10} \text{ GeV}) \rangle / N_{\mu}^{p}(\text{EPOS}) \sim 1.2 \div 1.5$

('additional' muons - of low energies \Rightarrow decay in inclined EAS)

 \Rightarrow lesson for Auger people!

-does not solve X_{\max} -contradiction

On the other hand

• hardly consistent with N_{μ} in KG (Haungs, ISVHECRI-08)

. contradiction with KASCADE hadrons (Horandel, ISVHECRI-08):

• primary proton spectrum is off... (Haungs, ISVHECRI-08)

Current problems with EPOS understood:

• neglected nuclear effects on $\sigma_{pA}^{\text{inel}}$ (Pierog, ISVHECRI-08):

• quick rise of K_{inel} contradicts HERA data (Engel, INT Workshop-2008):

Recent model updates

QGSJET II-04: account for Pomeron 'loops':

- small at low parton density (~ $G^2_{3\mathbb{P}}$)
- suppressed at high density:

$$\sim \sum_{n_1=0}^{\infty} \frac{(-\chi_{d\mathbb{P}}^{\mathbb{P}}(s_0 e^{y_1}, b_1))^{n_1}}{n_1!} = e^{-\chi_{d\mathbb{P}}^{\mathbb{P}}(s_0 e^{y_1}, b_1)}$$

- . Still a finite correction at large \boldsymbol{b}
- Required for *s*-channel unitarity all inelastic final states should have positive probabilities (e.g., double high mass diffraction was ill-defined)
- Most important: different energy / (projectile or target) mass dependence of screening corrections

Re-summation technique: SO, PRD2008

Adding 'loops' \Rightarrow additional screening corrections to fit same data on σ_{pp}^{tot} \Rightarrow smaller 3P-coupling

Consequences:

- 1) smaller diffraction (smaller $G_{3\mathbb{P}}$, suppression of peripheral collisions)
- 2) smaller nuclear screening effects (smaller $G_{3\mathbb{P}}$)
- 3) smaller screening effects for $\pi p \& \pi A (Kp \& KA)$

EAS characteristics - small but finite changes:

- . shift of $X_{
 m max}$ position up to $10~{
 m g/cm^2}$
- up to 10% changes of N_e (below 10¹⁷ eV)
- . up to 5% changes of N_{μ}

Model development completed now

 \Rightarrow will stay in contradiction with Auger data

EPOS 1.9 (*Pierog, ISVHECRI-08*) - problems understood & corrected

- high N_{μ} prediction preserved
- $\bullet \mathbf{smaller} \ N_e \ \& \ \mathbf{deeper} \ X_{\max} \ \mathbf{predicted}$
- $\bullet \Rightarrow$ may resolve KASCADE-Grande / Auger inconsistency!
- $\mbox{.}\ \mbox{can not resolve the } X_{\max}$ puzzle

Still a lot to do with EPOS

- role of inelasticity (similar effect on electron than cross section but change muon and hadron number)
 - correlations Ne-Eh
- different approach for saturation effect in EPOS
- more conservative approach for remnants in EPOS
- new hydrodynamical treatment of high density region (QGP)
- soon comparison to LHC ...

(Pierog, ISVHECRI-08)

What is needed to reproduce Auger data with protons?

- to get higher X_{\max} :
 - higher $\sigma_{p-\mathrm{air}}^{\mathrm{inel}}$
 - or higher $K_{p-\text{air}}^{\text{inel}}$ ('stopping power')?
- to get higher N_{μ} :
 - higher $N_{\pi-\mathrm{air}}^{\mathrm{ch}}$
 - somewhat 'harder' pion spectra?

Can CGC do that?

- . high parton density in the saturation region \Rightarrow high multiplicity
- . rapid rise of $B_{pp}^{\mathrm{el}} \Rightarrow$ of $\sigma^{\mathrm{tot}}, \, \sigma^{\mathrm{inel}}$
- independent parton fragmentation \Rightarrow high 'stopping power' (Drescher, Dumitru & Strikman, 2004)

Main problem: what one needs is

- $\mbox{.}\ not\ an\ explanation\ (fit)\ of\ the\ data$
- but a reliable prediction!
- \Rightarrow self-consistent & coherent model approach is awaited!

Substantial progress may be assured by the forthcoming LHC data

E.g., by TOTEM studies of σ_{pp}^{tot} , $\sigma_{pp}^{\text{diffr}}$, $d\sigma_{pp}^{\text{el}}/dt$ (Eggert, ISVHECRI-08):

Measurement of total cross section:

- allows to discriminate current model predictions for $\sigma_{pp}^{\text{tot}} \Rightarrow \sigma_{pA}^{\text{inel}}$, $\sigma_{AA}^{\text{inel}}$ given also B_{pp}^{el} (beware, inelastic screening is model-dependent)
- . significantly constrains model results for K_{hA}^{inel} , N_{hA}^{ch}

Measurement of $\sigma_{pp}^{\text{diffr}}$ - significantly constrains $K_{pp}^{\text{inel}} \Rightarrow K_{hA}^{\text{inel}}$

Measurement of $d\sigma_{pp}^{\text{el}}/dt = \text{information on the interaction profile } \sigma_{pp}(b)$ \Rightarrow allows to test saturation models

Indirect information on K_{inel} & saturation scale: CASTOR measurements (*McCauley*, *ISVHECRI-08*):

Outlook

Contemporary CR interaction models (e.g., QGSJET-II):

- . seem to work well up to Auger energies
- . have serious discrepances with Pierre Auger data

Model status:

- QGSJET-II:
 - model development finished
 - latest development Pomeron 'loops': $\Delta X_{\text{max}} < 10 \text{ g/cm}^2$; $\Delta N_{\mu}/N_{\mu} < 5\%$
 - in contradiction with Pierre Auger muon excess
- . EPOS (Pierog, ISVHECRI-08):
 - current problems understood and corrected
 - new version also predicts high N_{μ}

Promising framework for a new generation of models - CGC scheme However, big 'to do' list for CGC people...

LHC data: crucial test for present & future models!!!