Interpretation of cosmic ray anisotropy at highest energies

Peter TINYAKOV

ULB, Brussels & INR, Moscow

Gorbunov, P.T., Tkachev, Troitsky, arXiv:0711.4060 [astro-ph] arXiv:0804.1088 [astro-ph] H.Koers, P.T. in preparation

OUTLINE

- Introduction
- Correlation analysis and its limitations
- Possible interpretations
- Hypothesis-specific tests
- Conclusions

Introduction: correlation with AGN in PAO data

Science 318:938-943,2007 [arXiv:0711.2256] Astropart.Phys.29:188-204,2008 [arXiv:0712.2843]

- energy cut $E > 5.6 \times 10^{19} \text{ eV} \Longrightarrow$ 28 events
- angular size $\delta=3.1^\circ$
- 472 AGN with redshift z < 0.018(distance D < 75 Mpc)
- significance of correlation: 1.7×10^{-3} (derived from "control" set)

POSSIBLE INTERPRETATIONS?

Correlation analysis and its limitations

P.T., I. Tkachev, JETP Lett.74:1-5,2001 [astro-ph/0102101] JETP Lett.74:445-448,2001 [astro-ph/0102476] Phys.Rev.D69:128301,2004 [astro-ph/0301336]

Correlation analysis compares data to isotropic distribution. If there is a correlation signal, it means only that the data are not isotropic. It does not tell anything about the actual sources.

Correlation analysis and its limitations

Correlation analysis compares data to isotropic distribution. If there is a correlation signal, it means only that the data are not isotropic. It does not tell anything about the actual sources.

Example: excess around Cen A

P = the probability to obtain by chance, in the uniform distribution, the excess of CR events within given angle from Cen A equal or larger than that found in the data.

Note: this is not a real significance, because no penalties are included

If AGN are indeed sources, the correlation with Cen A will increase with statistics, since Cen A is located in the region with the overdensity of background AGN.

If instead Cen A is actual source of CRs and produces a cloud of events around it (say, deflected by $\lesssim 20^\circ$ by magnetic fields) while other AGN have nothing to do with UHECR, the correlation between AGN and UHECR will also increase with statistics, for the same reason.

Conclusion: correlation analysis alone cannot distinguish these completely different cases.

 \implies The question of interpretation remains open

POSSIBLE INTERPRETATIONS OF CORRELATION

• AGN or any subclass that is distributed in space in a similar way

Which particular subclass of AGN?

George et al, arXiv:0805.2053 Nagar, Matulich arXiv:0806.3220 Ghisellini et al, arXiv:0806.2393 Farrar, Greene, Zaw, arXiv:0806.3470

• Re-scattering on local structure of CR produced in remote sources

Kotera, Lemoine arXiv:0801.1450

• One or a few sources projected by chance on the local structures

Gorbunov et al, arXiv:0711.4060 Wibig, Wolfendale arXiv:0712.3403

From: Wibig, Wolfendale, arXiv:0712.3403

Contrary to AGN case, this explanation requires large ($\sim 20^\circ)$ deflections in the magnetic fields

One of the candidates for such a source is Cen A:

Gorbunov et al, arXiv:0711.4060 Fargion, arXiv:0801.0227 Moskalenko et al, arXiv:0805.1260 Hardcastle et al, arXiv:0808.1593

- anomalously close (~ 3.5 Mpc) powerful radio-galaxy
- possesses jets and radio-lobes usually considered as potential acceleration sites
- has been proposed as a potential source of UHECR by many authors
- outer lobes of Cen A extend to about 10° roughly in the direction of the supergalactic plane ⇒ a number of events may be associated with Cen A without assuming large deflections

Local map of Cen A region

From: Moskalenko et al, arXiv:0805.1260 [astro-ph]

Open circles — CR events; Red crosses — AGN

The color saturation of red crosses shows CR flux expected from a particular AGN, including the effect of the distance and the GZK attenuation.

Quantifying the deficit of events from Virgo region:

In the circle of 20° from the center of Virgo 6 events are expected while zero are observed $(P \sim 10^{-3})$.

Distributions of observed and expected events in angular distances from Virgo are different $(P = 2 \times 10^{-4} \text{ according to KS test}).$

 θ 20 40 0 8 events 25 4 20 15 and 15 events 0 5 0 30 60 90 120 150 180 0 θ

Caveat: no penalty for the choice of central point is included

Expected CR flux if sources trace matter distribution (E > 60 EeV)

Each color band contains equal fraction of total flux

These ideas may be used to design a simple statistical test:

H.Koers, P.T., in preparation

- Calculate the distribution of "colors" for the data
- Compare to the expected distribution

Pros: sensitive; binless (\implies no ambiguities). Tests the "structure hypothesis", not isotropy.

Cons: blind to certain types of deviations.

CONCLUSIONS

- * The question of interpretation remains open. The hypothesis that AGN are sources is simplest, but not necessarily the most probable one.
- * Specific test are required to discriminate between existing possibilities.
- * More data will come soon. It is important to define the hypotheses and testing procedures *before that* to avoid *a posteriori* tests.