Indirect detection of Dark Matter

with Antimatter cosmic rays:

effect of cosmological sub-halos

and uncertainties

Julien Lavalle

(Dept of Theoretical Physics, University of Turin)

 $Refs \ arXiv: \ astro-ph/0603796 - 0712.0468 - 0709.3634 - 0808.0332$

<u>Collab</u>: Delahaye, Salati, Taillet (LAPTH) – Maurin (LPNHE)

Ling, Nezri (ULB) – Donato, Fornengo (Turin) – Bi, Yuan (Beijing)

TeV Particle Astrophysics 2008

IHEP-Beijing, Sept. $24^{\rm th}$ - $28^{\rm th}$ 2008

Indirect detection of Dark Matter

Non-baryonic DM may explain a large fraction of the masses of galaxies and clusters: If made of exotic annihilating particles, we might detect indirect signatures by means of astronomical device

- **6** γ and ν : travel directly from the source to the observer
- 6 Antimatter cosmic rays: diffuse on the magnetic turbulences

 $\implies \frac{\text{Needs of large DM density regions}}{(\text{Centers of galaxies})}$

of Dark Matter Non-baryonic and clusters: If made of exoti peans of astronomical devi $d\phi_{ m prim}$ $\delta \frac{B_{\rm prim} \times < \sigma v >}{8\pi m_{\chi}^2}$ $\times \int dE_S \int d^3 \vec{x}_S \mathcal{G}(\vec{x}_{\odot}, E \leftarrow \vec{x}_S, E_S) \times \rho_{\rm mn}^2(\vec{x}_S) \times \frac{dN_{\rm prim}}{dE_S}$ esy P. Salati 6 γ and ν : the to the observ density regions ES) Antimatter cosmic magnetic turbulences en Lavalle, TeV Particle Astrophysics – Beijing, 24-28/09/2008 – p.2/20

of Dark Matter

Inhomogeneous halo

and boosted annihilation rate

Though the topic is controversial, clumps are predicted by theory and simulations of hierarchical formation of structures (in the frame of ΛCDM)

Annihilation rate is increased in a characteristic volume, because $< n_{\rm dm}^2 > \ge < n_{\rm dm} >^2$ (Silk & Stebbins ApJ'93)

The boost factor to the annihilation rate is related to the statistical variance via $B_{\rm ann} \sim \frac{\langle n_{\rm dm}^2 \rangle}{\langle n_{\rm dm} \rangle^2}$

There is some scatter in N-body experiments: how to translate theoretical uncertainties to flux uncertainties ? what and where are the less ambiguous signatures, if so ?

Inhomogeneous halo

and boosted annihilation rate

0

6

If unclumpy: $\rho_{\rm DM}^{\rm smooth}(\vec{x}) = \rho(\vec{x})$

Otherwise: $\rho_{\text{DM}}^{\text{clumpy}}(\vec{x}) = (1 - f)\rho(\vec{x}) + \sum_{i}^{N} M_{\text{cl},i} \times \delta^{3}(\vec{x} - \vec{x}_{i})$

Effective boost $B_{\rm eff} \approx (1-f)^2 + \frac{\sum_i^N \phi_{\rm cl,i}}{\phi_{\rm smooth}}$

φsmooth

(Fig. from Diemand et al, MNRAS'04)

Though the topic is controversial, clumps are predicted by theory and simulations of hierarchical formation of structures (in the frame of Λ CDM)

6 Annihilation rate is increased in a characteristic volume, because $< n_{\rm dm}^2 > \ge < n_{\rm dm} >^2$ (Silk & Stebbins ApJ'93)

6 The boost factor to the annihilation rate is related to the statistical variance via $B_{\rm ann} \sim \frac{\langle n_{\rm dm}^2 \rangle}{\langle n_{\rm dm} \rangle^2}$

There is some scatter in N-body experiments: how to translate theoretical uncertainties to flux uncertainties ? what and where are the less ambiguous signatures, if so ?

Short remark: γ -rays vs antimatter cosmic rays

- 6 over a small solid angle around the line of sight for γ -rays and ν 's
- over a rather small volume around the Earth for antimatter CRs, due to diffusion processes

 \implies Boost factors are not the same!

(see L.Pieri's talk)

Sub-TeV Cosmic ray propagation in the Galaxy

Sub-TeV Cosmic ray propagation in the Galaxy

cf. e.g. Berezinsky (1990)

6 Cylindrical diffusive halo :

 $R \sim 20 \mathrm{kpc}, \mathrm{L} \sim 3 \mathrm{kpc}$ diffusion off magnetic inhomogeneities, reacceleration.

- 6 Gaseous disc ($h \sim 0.1 \mathrm{kpc}$) : spallation + convection upside down.
- 6 free parameters: $K(E), L, R, V_C, V_A$ (Figure by D. Maurin)

Sub-TeV Cosmic ray propagation in the Galaxy

cf. e.g. Berezinsky (1990)

- 6 Cylindrical diffusive halo : $R \sim 20 \text{kpc}, L \sim 3 \text{kpc}$ diffusion off magnetic inhomogeneities, reacceleration.
- 6 Gaseous disc ($h \sim 0.1 \text{kpc}$) : spallation + convection upside down.
- **6** free parameters: $K(E), L, R, V_C, V_A$

Diffusion equation for e^+/\bar{p}

Diffusion equation for e^+

(cf. Bulanov & Dogel 73, Baltz & Edsjö 98, Lavalle et al 07, etc):

$$\partial_t \frac{dn}{dE} = \vec{\nabla} (K(E, \vec{x}) \vec{\nabla} \frac{dn}{dE}) + \partial_E (b(E) \frac{dn}{dE}) + Q(E, \vec{x}, t) = 0$$

Green equation for antiprotons (cf. e.g. Maurin et al 01):

$$\left\{-K\triangle + V_c \frac{\partial}{\partial z} + 2h\Gamma_{\rm tot}\delta(z)\right\}\mathcal{G}^{\bar{p}} = \delta(\vec{r} - \vec{r'})$$

diffusion $K(E) = K_0 \left(\frac{E}{E_0}\right)^{\alpha}$

spallation

Energy losses :IC on star light and CMBconvection+ synchrotron $b(E) = \frac{E^2}{E_0 \tau_E}$ source :with $\tau_E \sim 10^{16}$ sinjected spectrum

Uncertainties and degeneracies on parameters in Maurin et al 01

(Complementary & full numerical: Galprop, Strong & Moskalenko

98-08)

Energy-dependent diffusion scales for e^+ and \overline{p}

- e⁺'s lose energy:
 survey larger and larger
 volumes when detected at
 lower and lower energies
- p's do not lose energy, but
 convective wind and
 spallation processes very
 efficient at low energy:
 survey larger volume at high
 energies

Energy-dependent diffusion scales for e^+ and \overline{p}

- e⁺'s lose energy:
 survey larger and larger
 volumes when detected at
 lower and lower energies
- p̄'s do not lose energy, but
 convective wind and
 spallation processes very
 efficient at low energy:
 survey larger volume at high
 energies

Effective volume picture for the smooth contribution Inject a 200 GeV e^+ with $Q(r) = \rho^2(r) \propto r^{-2}$...

Effective volume picture for the smooth contribution Inject a 200 GeV e^+ with $Q(r) = \rho^2(r) \propto r^{-2}$...

Simplest view of propagation

$$G \propto \exp\left(-\frac{|\vec{x}_S - \vec{x}_{\odot}|^2}{\lambda_D^2}\right)$$

with $\lambda_D = \sqrt{4K_0\Delta \tilde{t}} = f(E_S, E_D)$

 \rightarrow Detection volume scaling a sphere of radius λ_D

Figures:
galactic plane at z=0 kpcx and y from -20 to 20 kpcEarth located at (x = 8, y = 0) kpc2D plots of $G(\vec{x}, 200 {\rm GeV} \rightarrow \tilde{x}_{\odot}, {\rm E}) \times \rho^2$

Julien Lavalle, TeV Particle Astrophysics – Beijing, 24-28/09/2008 – p.8/20

Computing the odds of the Galactic Lottery: Identical clumps tracking the smooth halo

Computing the odds of the Galactic Lottery: Identical clumps tracking the smooth halo

Boost for antimatter CRs:

(J.L, J.Pochon, P.Salati & R.Taillet – A&A 462, 2007)

- Long believed to be simple rescaling of ^b_μ b_μ
 fluxes ...
- 6 This picture is wrong. Due to propagation effects, *boost* is a non-trivial function of energy
- 6 Variance depends on the number of clumps within the volume bounded by diffusion length λ_D : increases when the population when λ_D decreases $(\sim 1/\sqrt{N_{\rm eff}})$.
- 6 The recipe applies to any kind of sources
- 9 Predictions for N-body-like models ???

Results of the state-of-the-art N-body experiments

Results of the state-of-the-art N-body experiments

What is important is to know the luminosity PDF and spatial PDF. N-body results as input ingredients, and allowed [ranges]:

- Spatial distribution:[cored isothermal smooth-like]
- 6 Mass distribution: minimal clump mass $M_{\rm min}$ $[10^6 - 10^{-6} M_{\odot}]$, logarithmic slope $\alpha_{\rm m}$ [1.8-2.0]
- 6 Spherical inner profile(s) for clumps $\propto r^{-\gamma}$, with $\gamma \in [NFW-Moore] = [1,1.5]$ and concentration [Eke et al 01 – Bullock et al 01]

[Clump luminosity $\equiv \xi = f(M)$]

NFW vs cored isothermal

Results of the state-of-the-art N-body experiments

What is important is to know the luminosity PDF and spatial PDF. N-body results as input ingredients, and allowed [ranges]:

- Spatial distribution:[cored isothermal smooth-like]
- 6 Mass distribution: minimal clump mass $M_{\rm min}$ $[10^6 - 10^{-6} M_{\odot}]$, logarithmic slope $\alpha_{\rm m}$ [1.8-2.0]
- 6 Spherical inner profile(s) for clumps $\propto r^{-\gamma}$, with $\gamma \in [NFW-Moore] = [1,1.5]$ and concentration [Eke et al 01 – Bullock et al 01]

Clump luminosity
$$\equiv \xi = f(M)$$

Results of the state-of-the-art N-body experiments

What is important is to know the luminosity PDF and spatial PDF. N-body results as input ingredients, and allowed [ranges]:

- Spatial distribution:[cored isothermal smooth-like]
- 6 Mass distribution: minimal clump mass $M_{\rm min}$ $[10^6 - 10^{-6} M_{\odot}]$, logarithmic slope $\alpha_{\rm m}$ [1.8-2.0]
- **Spherical inner profile(s)** for clumps $\propto r^{-\gamma}$, with $\gamma \in [NFW-Moore] = [1,1.5]$ and **concentration** [Eke et al 01 – Bullock et al 01]

[Clump luminosity $\equiv \xi = f(M)$]

 $\xi_{\rm NFW}^{\rm B01} \simeq 0.1 \times \xi_{\rm Moore}^{\rm B01} \simeq 10 \times \xi_{\rm NFW}^{\rm ENS01}$

Results for e^+ and \bar{p} using different models of N-body-like clumps

Next slides: (i) Fluxes – smooth & clumps (ii) Boosts

$$\phi_{\rm cl}^{\rm tot}(\oplus) = S \times \left\{ \int dM \xi_{\rm cl}(M) \times \frac{dP_M^{\rm cl}}{dM} \right\} \times \left\{ \int d^3 \vec{x} \frac{dP_V^{\rm cl}}{dV} \times \int dE' \ \mathcal{G}(\oplus, E \leftarrow \vec{x}, E') \times \frac{dN}{dE'} \right\}$$

$$B_{\mathrm{eff}} \simeq 1 + rac{\phi_{\mathrm{cl}}^{\mathrm{tot}}(\oplus)}{\phi_{\mathrm{smooth}}(\oplus)}$$

Positrons:

6 Source: injection of a 200 GeV line

Antiprotons:

6 Source: flat spectrum (1/GeV)

Both:

- 6 Assume annihilation rate of $m_{\chi} = 200 GeV$ and $\langle \sigma v \rangle = 3 \times 10^{-26} \text{cm}^3/\text{s}$
- 6 Spectra between 0.1-200 GeV

Primary fluxes for a 200 GeV e^+ line / antiprotons

Boost factors for a 200 GeV e^+ line / antiprotons

Boost factors for a 200 GeV e^+ line / antiprotons

3D map of DM density from N-body simulations

3D map of DM density from N-body simulations

(arXiv:0808.0332

Lavalle, Nezri, Ling, Athanassoula & Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) – $M_{\rm res} = 10^6 M_{\odot}$; $L_{\rm res} = 200 \ {\rm pc}$
- Analysis already made for γ-rays (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- 1st trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

Results: \sim 1-2 order of magnitude uncertainty on antimatter flux (local density fluctuations or asphericity), but still below the data: no excess expected below 100 GeV.

Athanassoula, Ling, Nezri & Teyssier (arXiv:0801.4673)

3D map of DM density from N-body simulations

(arXiv:0808.0332

Lavalle, Nezri, Ling, Athanassoula & Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) – $M_{\rm res} = 10^6 M_{\odot}$; $L_{\rm res} = 200 \ {\rm pc}$
- Analysis already made for γ-rays (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- Ist trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

Results: \sim 1-2 order of magnitude uncertainty on antimatter flux (local density fluctuations or asphericity), but still below the data: no excess expected below 100 GeV.

Different spherical fits give \sim the same fluxes

3D map of DM density from N-body simulations

-15

(arXiv:0808.0332

Lavalle, Athanassoula & Nezri. Ling, axis [kpc] - N-body frame Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) – $M_{\rm res} = 10^6 M_{\odot} ; L_{\rm res} = 200 \text{ pc}$
- 0 Analysis already made for γ -rays (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- 6 1st trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

Results: \sim 1-2 order of magnitude uncertainty on antimatter flux (local density fluctuations or asphericity), but still below the data: no excess expected below 100 GeV.

Earth at different 3 positions (8 kpc)

3D map of DM density from N-body simulations

(arXiv:0808.0332

Lavalle, Nezri, Ling, Athanassoula & Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) – $M_{\rm res} = 10^6 M_{\odot}$; $L_{\rm res} = 200 \ {\rm pc}$
- Analysis already made for γ-rays (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- Ist trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

3D map of DM density from N-body simulations

(arXiv:0808.0332

Lavalle, Nezri, Ling, Athanassoula & Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) – $M_{\rm res} = 10^6 M_{\odot}$; $L_{\rm res} = 200 \ {\rm pc}$
- Analysis already made for γ-rays (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- Ist trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

3D map of DM density from N-body simulations

(arXiv:0808.0332

Lavalle, Nezri, Ling, Athanassoula & Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) – $M_{\rm res} = 10^6 M_{\odot}$; $L_{\rm res} = 200 \ {\rm pc}$
- Analysis already made for γ-rays (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- Ist trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

3D map of DM density from N-body simulations

(arXiv:0808.0332

Ling, Athanassoula & y axis [kpc] - N-body frame Lavalle, Nezri, Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) - $M_{\rm res} = 10^6 M_{\odot} ; L_{\rm res} = 200 \text{ pc}$
- 6 Analysis already made for γ -rays (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- 6 1st trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

3D map of DM density from N-body simulations

(arXiv:0808.0332

Ling, Athanassoula axis [kpc] - N-body frame Lavalle, Nezri, & Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) - $M_{\rm res} = 10^6 M_{\odot}$; $L_{\rm res} = 200 \text{ pc}$
- 6 Analysis already made for $\gamma\text{-rays}$ (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- 6 1st trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

3D map of DM density from N-body simulations

(arXiv:0808.0332

Ling, Athanassoula & axis [kpc] - N-body frame Lavalle, Nezri, Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) - $M_{\rm res} = 10^6 M_{\odot} ; L_{\rm res} = 200 \text{ pc}$
- 6 Analysis already made for $\gamma\text{-rays}$ (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- 6 1st trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

3D map of DM density from N-body simulations

(arXiv:0808.0332

axis [kpc] - N-body frame Nezri, Ling, Athanassoula & Lavalle, Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) - $M_{\rm res} = 10^6 M_{\odot}$; $L_{\rm res} = 200 \text{ pc}$
- 6 Analysis already made for γ -rays (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- 6 1st trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

CAVEATS: too simplistic galaxy model

Rotation curves with baryon contribution subtracted (Englmaier & Gerhard 2006, Bissantz & Gerhard 2002)

WARNING:

theoretical uncertainties on backgrounds !!!!

Clump model and LKP dark matter:

Positron fraction (energy-dependent) excess possible, but ...

WARNING:

theoretical uncertainties on backgrounds !!!!

Clump model and LKP dark matter:

Positron fraction (energy-dependent) excess possible, but ...

WARNING:

theoretical uncertainties on backgrounds !!!!

(antiprotons) 10^{-1} $s^{-1} sr^{-1} GeV^{-1}$ 10-2 (m^{-2}) 10^{-3} $\Phi_{
m p}$ 10^{-4} 0.1 10 $T_{\overline{p}}$ (GeV)

Maurin, Taillet et al (2002)

Delahaye et al, in prep (2008) (positrons – preliminary)

We derived a method to account for DM inhomogeneities when predicting antimatter fluxes

- Clump properties are still under debate, though their presence is now well accepted
- The observational effects of sub-halos are different for annihilation signatures in γ -rays and antimatter cosmic rays
- Boost factors for antimatter CRs < 20 !!!</p>
- This study provides estimates of the combined theoretical uncertainties due to both (i) DM inhomogeneities (ii) CR propagation
- We need high energy data: where the background is falling down
- Ш

Ш

Estimate of theoretical uncertainties on the e^+ bgd is mandatory: Delahaye et al in prep

- IV Need of better constraints on propagation parameters: PAMELA results soon (AMS-02 later)
- V Complementarity with other messengers (γ, ν) and detection methods! (LHC will help)