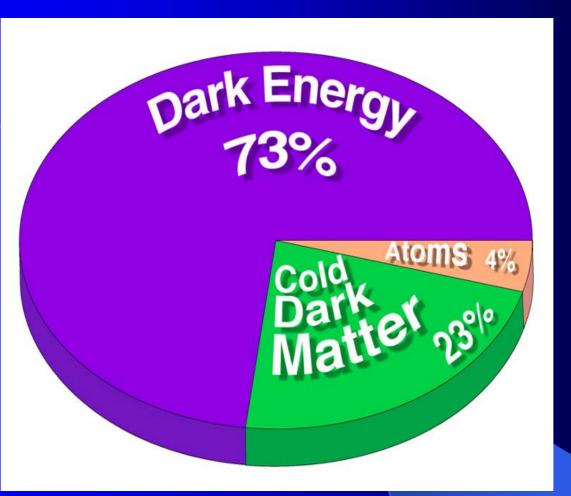
Radio Detection of Dark Matter Annihilation in Dwarf Galaxies

Feng Huang and Xue-Lei Chen

National Astronomical Observatories of China Dark Matter and Dark Energy Group

2008. 09.24 TeVP08


Introduction

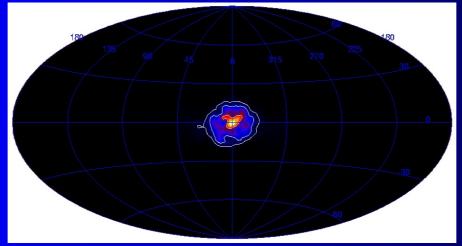
Sunyaev-Zel'dovich (SZ) effect in dSphs

• Synchrotron emission in dSphs

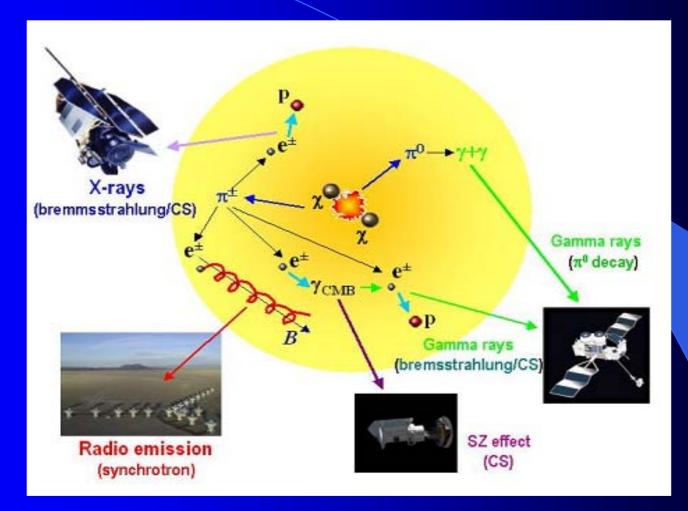
Summary

Introduction

Evidence: Rotation Curves, CMB, BBN, LSS ...


What's the particle nature? —remain a puzzle **Dark Matter Candidates**

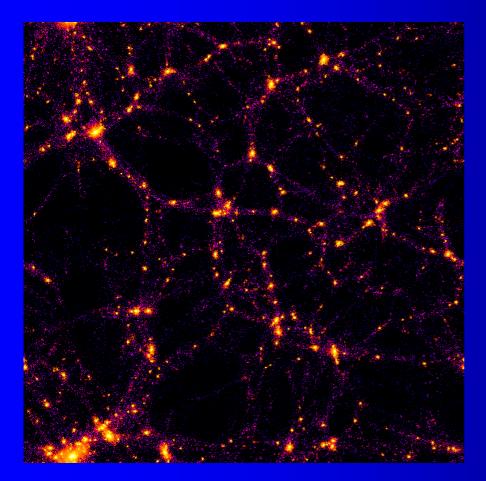
Neutralino : 10GeV~TeV


10GeV~TeV correct DM abundance natural from super symmetry

Light Dark Matter: 1~100 MeV

511keV emission line

DM Annihilation Signals



Radio Detection

Colafrancesco, IoP/RAS Meeting 2007

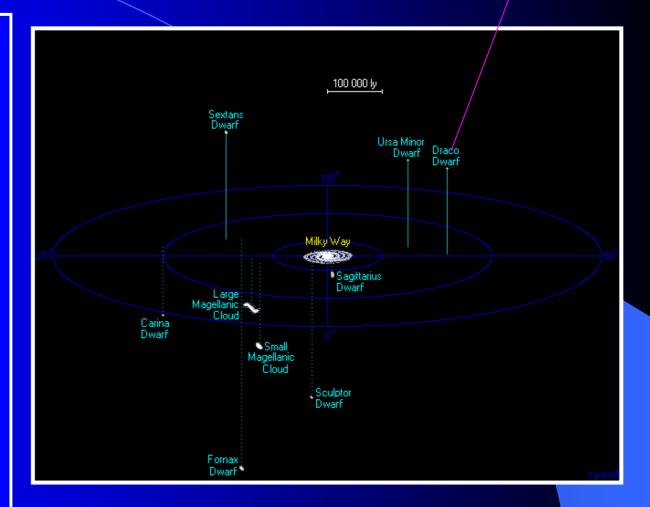
Dark halo

Annihilation rate $\propto \rho^2$

Density profile of dark halo

$$\rho_{NFW}(r) = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$$

$$\rho_{Moore}(r) = \frac{\rho_s}{(r/r_s)^{1.5}(1 + (r/r_s)^{1.5})}$$


$$\rho_{cored} = \frac{v_a^2}{4\pi G} \frac{3r_c^2 + r^2}{(r_c^2 + r^2)^2}$$

Nearby dSphs: satellites of Milky Way

High latitude Highes<mark>t</mark> mass/light

<u>Name</u>	Year Discovered
LMC	1519
SMC	1519
Sculptor	1937
Fornax	1938
Leo II	1950
Leo I	1950
Ursa Minor	1954
Draco	1954
Carina	1977
Sextans	1990
Sagittarius	s 1994
Canis Major	2003
Ursa Major	I 2005
Willman I	2005
Ursa Major	II 2006
Bootes	2006
Canes Venat	ici I 2006
Canes Venat	ici II2006
Coma	2006
Leo IV	2006
Hercules	2006
Leo T	2007

Census of Milky Way Satellites (Circa 2007)

dSphs: small halo forms first close to be pure dark hal

Energy spectrum of e^{\pm} **produced by DM annihilation**

Diffuse transport equation of electrons (positrons) produced by DM annihilation

$$\frac{\partial}{\partial t}\frac{dn_e}{dE_e} = \nabla \left[D(E,r)\nabla \frac{dn_e}{dE_e} \right] + \frac{\partial}{\partial E} \left[b(E,r)\frac{dn_e}{dE_e} \right] + q_e(E,r)$$

Diffusion coefficient:

$$D(E) = D_0 (E/B)^{\delta}$$

Energy loss term:

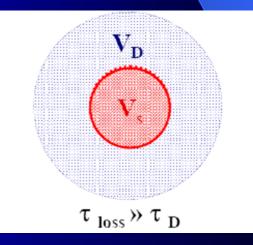
Source spectrum:

$$b(E) = b_{Syn} + b_{ICS} + b_{Coul}$$

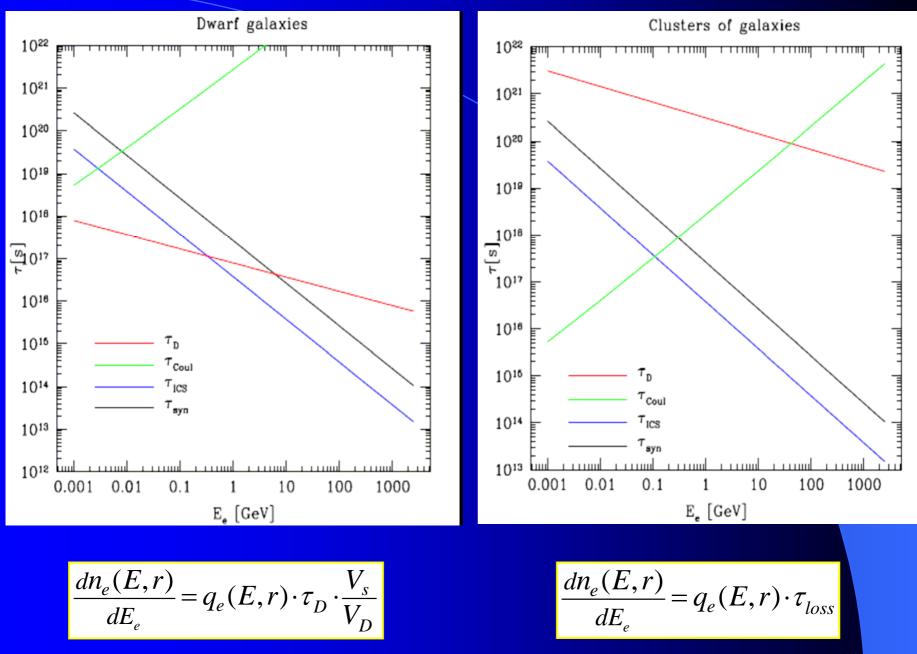
$$q_e(E,r) = \frac{1}{2 M_{\chi}^2} \sum_f \frac{dN_e^f}{dE_e}(E) B_f \ \rho^2(r)$$

Basic Formulas

Stationary transport equation:


$$\frac{\partial}{\partial t} \frac{dn_e}{dE_e} = \nabla \left[D(E, r) \nabla \frac{dn_e}{dE_e} \right] + \frac{\partial}{\partial E} \left[b(E, r) \frac{dn_e}{dE_e} \right] + q_e(E, r)$$

Qualitative Electrons equilibrium spectrum

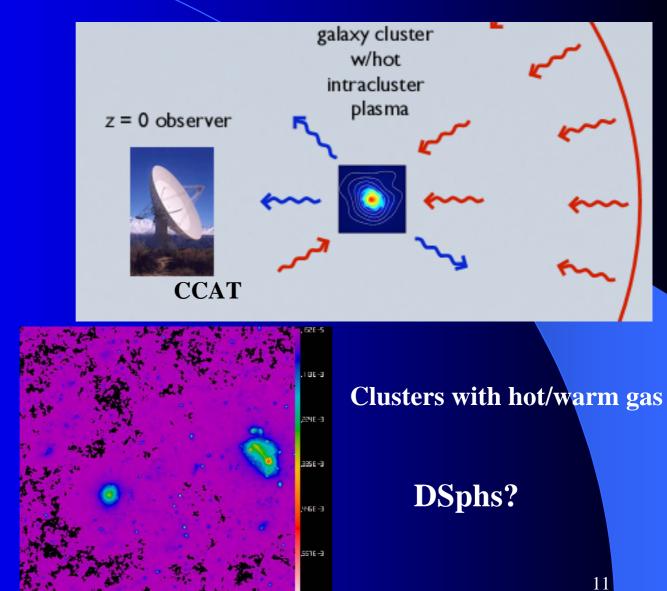

$$\frac{dn_e(E,r)}{dE_e} \approx [q_e(E,r)\tau_{loss}] \times \frac{V_s}{V_s + V_o} \times \frac{\tau_D}{\tau_D + \tau_{loss}}$$

time scales:

$$\tau_D = R_{halo}^2 / D(E)$$

$$\tau_{loss} = E / b(E)$$

Colafrancesco, IoP/RAS Meeting 2007



Thermal SZ effect

Non-thermal SZ effect induced by electrons&positrons produced by DM annihilation

$$\Delta T \propto y_{DM} \cdot \tilde{g}(x)$$

$$y_{DM} = \frac{\sigma_T}{m_e c^2} \int P_{DM} d\ell$$

Compton parameter

Spectral shape

$$\tilde{g}(x) = \frac{m_e c^2}{\langle k_B T_e \rangle} \left\{ \frac{1}{\tau} \left[\int_{-\infty}^{+\infty} i_0(x e^{-s}) P(s) ds - i_0(x) \right] \right\}$$

$$\langle k_B T_e \rangle \equiv \frac{\sigma_T}{\tau} \int P d\ell = \frac{\int P d\ell}{\int n_e d\ell} = \int_0^\infty dp f_e(p) \frac{1}{3} pv(p) m_e c$$

(*Enßlin&Kaiser: astro-ph/0001429 Colafrancesco: astro-ph/0211649.....)*

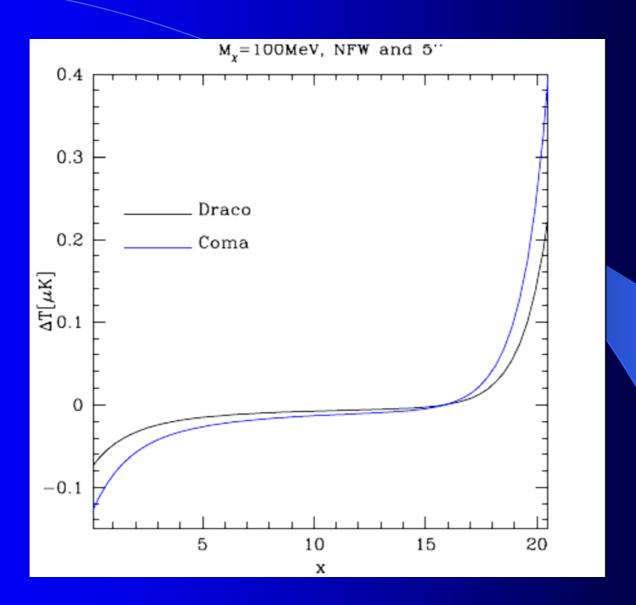
SZ effect induced by neutralino self-annihilation

$m_{\chi} = 100 \ GeV$					
	$\nu = 35 \ GHz$	$\nu = 22 \ GHz$			
NFW	$-1.57 \cdot 10^{-11}$	$-1.74 \cdot 10^{-11}$			
Moore	$-3.12 \cdot 10^{-8}$	$-3.47 \cdot 10^{-8}$			
Cored	$-2.95 \cdot 10^{-17}$	$-3.28 \cdot 10^{-17}$			

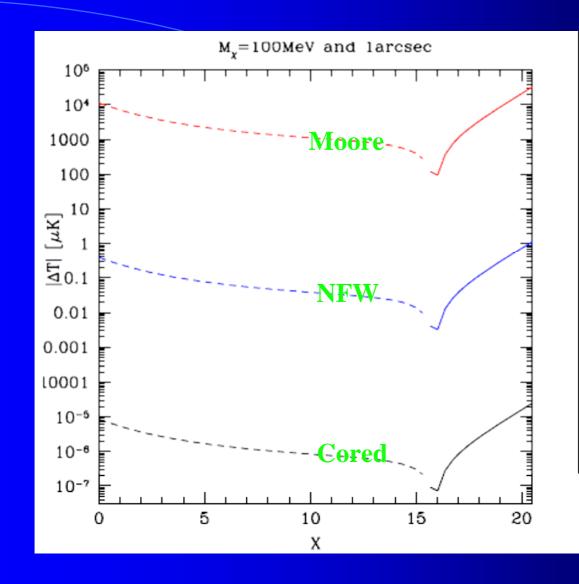
$m_{\chi} = 10 \ GeV$					
	$\nu = 35 \ GHz$	$\nu = 22 \ GHz$			
NFW	$-3.69 \cdot 10^{-9}$	$-4.1 \cdot 10^{-9}$			
Moore	$-6.94 \cdot 10^{-6}$	$-7.71 \cdot 10^{-6}$			
Cored	$-6.05 \cdot 10^{-15}$	$-6.73 \cdot 10^{-15}$			

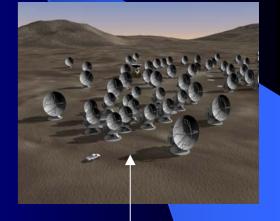
Diffusion is important in DSphs.

Predicted amplitude of decrements are much smaller than the results in previous paper (Colafrancesco:astro-ph/0602093)

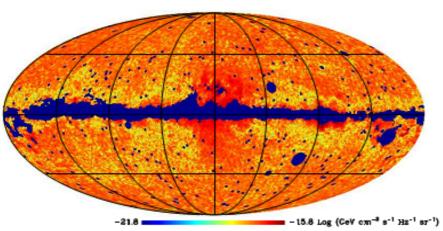

Only highly cusped dark halos produce μK

 $\Delta T \sim (m\chi)^{-2}$

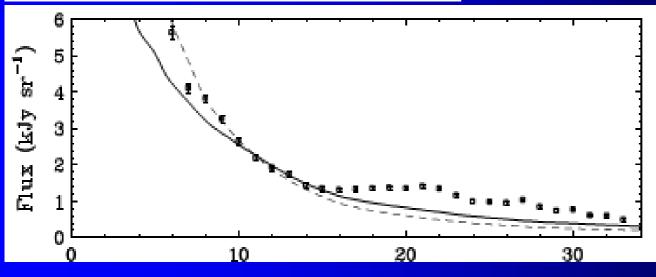

Larger distortion expected in the case of Light dark matter


SZ effect induced by Light DM self-annihilation

Non-thermal SZ_DM in DSphs is comparable to that in Cluster of Galaxies

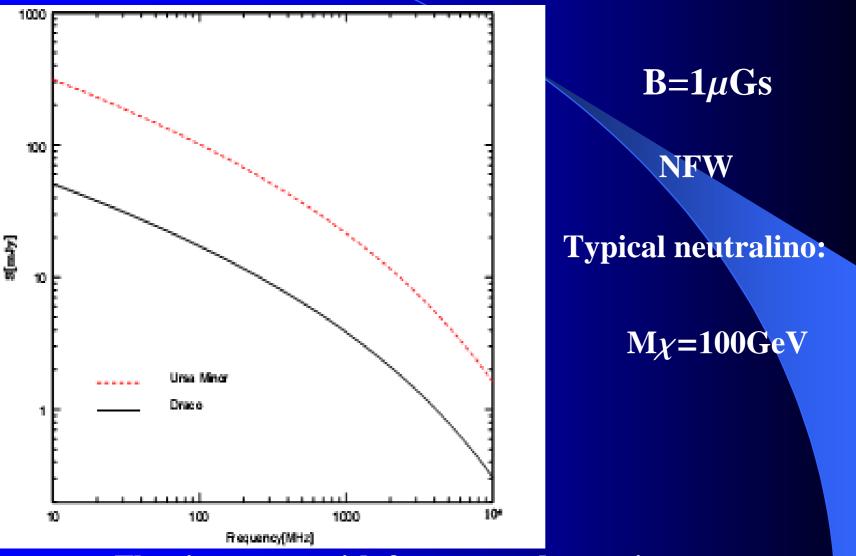

Density profile of the DM halo is crucial in determining the amplitude. Only the highly cusped profile predicted sizable distortion $\mu K \sim m K$

Synchrotron emission induced by DM annihilation


WMAP Haze

DM annihilation

WMAP Haze at 23 GHz


B=10µGs @ Galactic center

Dashed----Moore Solid -----NFW

D. Hooper astro-ph/0705.3655

Synchrotron emission in DSphs

Flux increases with frequency decreasing

Radio emission in dSphs: diffuse and weak

Table 2. Related results (θ : half of the angular diameter)

	Flux(mJy) from Draco			Flux(mJy) from Ursa Minor		
	$4.89 \mathrm{GHz}$	$1.42 \mathrm{GHz}$	$0.7 \mathrm{GHz}$	4.89GHz	$1.42 \mathrm{GHz}$	$0.7 \mathrm{GHz}$
$\theta = 6'$	0.2	0.7	1.1	0.4	1.5	2.7
$\theta = 30'$	0.8	2.9	5.1	4.4	15.9	28.6
$\theta = 60'$	0.9	3.2	5.7	6.2	22.8	40.9

~90% of the total flux is from the central region of 2 degree ~50% is within central 50 arcmin region.

What's the implication for observation?

Radio Observation Requirement

Fomalont et. al. with VLA at 4.885GHz in 1979

very center region (within 4arcmin) no detectable radio emission (<2mJy)

Updated observation required

Diffuse emission------large field viewweak emission------high sensitivity

Proposed ATA observation

Allen Telescope Array Begins Scientific Observations

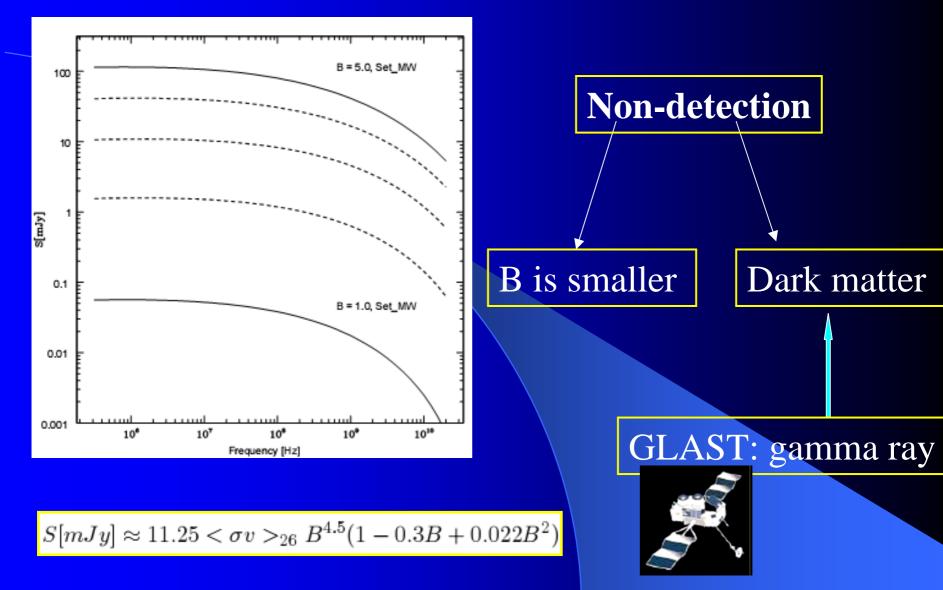


Figure 2: Rendering of the completed ATA-350 at the Hat Creek Radio Observatory.

F.o.V at 1.4GHz: 2.5 degree 42 working antennas Effective bandwidth :103MHz 6hrs on-source time.

rms: 0.1mJy/beam @ 1.4GHz peak/rms >10 21

Crucial factor: local magnetic field B

 Electrons&positrons produced by DM annihilating in DSphs will suffer diffuse loss and energy loss

 SZ effect : μK @ arcsec for neutralino μK~ mK @ arcsec for light DM
 for highly cusped density profile

 Synchrotron emission : diffuse and weak searching for extended source

Thank You

Thank You