TeV-scale type-I+II seesaw mechanism and its collider signatures at the LHC

Wei Chao (IHEP)

Outline

- •Brief overview of neutrino mass models.
- •Introduction to a TeV-scale type-I+II seesaw model.
- •EW precision data constraints and collider signatures. •Concluding remarks .

TeVPA08

Chao, Si, Xing and Zhou, PLB 2008; Chao, arXiv:0806.0889[hep-ph]

Neutrinos are massive!

The first evidence for new physics beyond the SM

$$\begin{split} \Delta m_{21}^2 &= 7.67 \substack{+0.22\\ -0.21} \begin{pmatrix} +0.67\\ -0.61 \end{pmatrix} \times 10^{-5} \text{ eV}^2 ,\\ \Delta m_{31}^2 &= \begin{cases} -2.37 \pm 0.15 \begin{pmatrix} +0.43\\ -0.46 \end{pmatrix} \times 10^{-3} \text{ eV}^2 & \text{(inverted hierarchy)} ,\\ +2.46 \pm 0.15 \begin{pmatrix} +0.47\\ -0.42 \end{pmatrix} \times 10^{-3} \text{ eV}^2 & \text{(normal hierarchy)} ,\\ \theta_{12} &= 34.5 \pm 1.4 \begin{pmatrix} +4.8\\ -4.0 \end{pmatrix} ,\\ \theta_{23} &= 42.3 \substack{+5.1\\ -3.3} \begin{pmatrix} +11.3\\ -7.7 \end{pmatrix} ,\\ \theta_{13} &= 0.0 \substack{+7.9\\ -0.0} \begin{pmatrix} +12.9\\ -0.0 \end{pmatrix} ,\\ \delta_{\text{CP}} &\in [0, 360] . \end{split}$$

Gonzalez Garcia and Maltoni, Phys. Rept. 460, 1(2008).

- 1. There are no right-handed neutrinos.
- 2. There is only one Higgs doublet of the SU(2)_L.
- 3. There are only renormalizable terms.

To generate non-zero neutrino masses one must relax 1 and (or) 2 (or) 3!

Neutrino mass models

Seesaw mechanisms, SM+ super-heavy particles

•Type-I: Right-handed Majorana neutrinos. •Type-II: Triplet boson. •Type-III: Triplet fermions.

 $M_{\nu} \approx \frac{\langle \tilde{\nu} \rangle^2}{M_{\nu}} \approx \frac{\mathrm{MeV}^2}{\mathrm{TeV}} \approx \mathrm{eV}$

Loop models, neutrino masses are radiatively induced

 \bullet RPV, sneutrinos get vevs , inducing mixing between ν and χ

Type-I +II seesaw model: SM+3 N_R + $1\Delta_L$

$$\begin{split} -\mathcal{L}_{\text{lepton}} &= \overline{l_{\text{L}}} Y_{l} H E_{\text{R}} + \overline{l_{\text{L}}} Y_{\nu} \tilde{H} N_{\text{R}} + \frac{1}{2} \overline{N_{\text{R}}^{c}} M_{\text{R}} N_{\text{R}} + \frac{1}{2} \overline{l_{\text{L}}} Y_{\Delta} \Delta i \sigma_{2} l_{\text{L}}^{c} + \text{h.c.} \\ \\ -\mathcal{L}_{\text{mass}} &= \overline{e_{\text{L}}} M_{l} E_{\text{R}} + \frac{1}{2} \overline{\left(\nu_{\text{L}} - N_{\text{R}}^{c}\right)} \begin{pmatrix} M_{\text{L}} & M_{\text{D}} \\ M_{\text{D}}^{T} & M_{\text{R}} \end{pmatrix} \begin{pmatrix} \nu_{\text{L}}^{c} \\ N_{\text{R}} \end{pmatrix} + \text{h.c.} \\ \\ \\ M_{\nu} &= v_{\Delta} Y_{\Delta} - M_{D} M_{R}^{-1} M_{D}^{T} \\ \hline v_{\Delta} &= \lambda_{\xi} v^{2} / M_{\xi} , \ v = \sqrt{\mu^{2} / (\lambda - 2\lambda_{\xi}^{2})} \\ \\ V(H, \Delta) &= -\mu^{2} H^{\dagger} H + \lambda \left(H^{\dagger} H\right)^{2} + \frac{1}{2} M_{\xi}^{2} \text{Tr} \left(\Delta^{\dagger} \Delta\right) - \left[\lambda_{\xi} M_{\xi} H^{T} i \sigma_{2} \Delta H + \text{h.c.}\right] \end{split}$$

Seven Higgs bosons : doubly charged Higgs bosons Δ^{++} and Δ^{--} ; singly charged Higgs bosons δ^{+} and δ^{-} ; CP-odd A^{0} ; CP-even H⁰; SM Higgs h⁰.

Higgs sector in detail:

$$M_{\Delta^{\pm\pm}}^2 = M_{\Delta}^2 , \quad M_{\delta^{\pm}}^2 = M_{\Delta}^2 (1+\kappa^2) , \quad M_{A^0}^2 = M_{\Delta}^2 (1+2\kappa^2) , \quad M_{H^0}^2 = M_{\xi}^2 \left(c_{\alpha}^2 + s_{\alpha}^2 \varrho^2 + 2\sqrt{2} s_{\alpha} c_{\alpha} \kappa \right)$$

$$\tan \theta = \kappa , \quad \tan 2\alpha = 2\sqrt{2}\kappa/(1-\rho^2) , \quad \kappa = \sqrt{2}v_{\Delta}/v , \quad \rho = \sqrt{2}/M_{\xi} .$$

Constraints from EW precision data:

$$M_{h^0}^2 = M_{\xi}^2 \left(c_{\alpha}^2 \rho^2 + s_{\alpha}^2 - 2\sqrt{2}s_{\alpha}c_{\alpha}\kappa \right) \qquad M_W^2 = \frac{1}{4}g_2^2 \left(v^2 + 2v_{\xi}^2 \right) , \qquad M_Z^2 = \frac{1}{4} \left(g_1^2 + g_2^2 \right) \left(v^2 + 4v_{\xi}^2 \right)$$

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = \frac{v^2 + 2v_{\xi}^2}{v^2 + 4v_{\xi}^2} , \qquad \rho = 1.0002^{+0.0007}_{-0.0004} \implies \frac{v_{\xi}}{v} \lesssim 0.01$$

Neutrino sector: Diagonalization (flavor basis \Rightarrow mass basis):

$$\begin{pmatrix} V & R \\ S & U \end{pmatrix}^{\dagger} \begin{pmatrix} M_{\rm L} & M_{\rm D} \\ M_{\rm D}^T & M_{\rm R} \end{pmatrix} \begin{pmatrix} V & R \\ S & U \end{pmatrix}^{\ast} = \begin{pmatrix} \widehat{M}_{\nu} & \mathbf{0} \\ \mathbf{0} & \widehat{M}_{\rm N} \end{pmatrix}$$

 $V^{\dagger}V + S^{\dagger}S = VV^{\dagger} + RR^{\dagger} = 1$ $v_{L} = V\hat{v}_{i} + R\hat{N}_{i}$ V is not unitary $V \approx \left(1 - \frac{1}{2}RR^{\dagger}\right)V_{\text{unitary}}$

The interactions of heavy Majorana neutrinos with SM particles:

$$\mathcal{L}_{\mathrm{W}} = -\frac{g}{\sqrt{2}} \overline{l_{\mathrm{L}}} R \gamma^{\mu} P_L N_i W_{\mu}^{-} + \text{h.c.} ,$$

$$\mathcal{L}_{\mathrm{Z}} = -\frac{g}{2c_{\mathrm{W}}} \overline{\nu_{\mathrm{L}}} R \gamma^{\mu} P_L N_i Z_{\mu} + \text{h.c.} ,$$

$$\mathcal{L}_{\mathrm{H}} = -\frac{g}{2} \frac{M_i}{M_{\mathrm{W}}} \overline{\nu_{\mathrm{L}}} R P_R N_i h^0 + \text{h.c.} .$$

A TeV-scale type-I+II seesaw scenario

N_R and Δ are O(1) TeV or close to the EW scale.
M_D is O(10) GeV to generate large UV and LNV signatures for N.
M_L is O(1) GeV to generate large LNV signatures for Δ.

Some questions:

•How to generate small but non-zero neutrino masses?

- Does this model conflict with EW precision measurement?
- What about the collider signatures of N_R and Δ ?

1 Neutrino masses

Discrete flavor symmetry can be used to guarantee the "structure cancellation" ---- Chao, Luo, Xing and Zhou PRD 08

Small neutrino masses can be generated from slight deviation from this complete "structure cancellation"

The relevant perturbation parameters are mainly responsible for those neutrino masses and contribute little to possible collider signatures ---- decoupling between collider physics and the neutrino mass generation.

 $(Y_{\Delta})_{\alpha\beta} = \frac{(M_{\rm L})_{\alpha\beta}}{1} \approx 1$

Dangerous radiative corrections

 $\delta_{II} \ll \delta_I \preceq 10^{-3}$

$$\delta M_{I} = \frac{\alpha_{w}}{16\pi M_{W}^{2}} R_{ik} M_{k} R_{kj}^{T} \left[M_{k}^{2} F(M_{k}^{2}, M_{Z}^{2}) - M_{k}^{2} F(M_{k}^{2}, M_{h^{0}}^{2}) - 4M_{Z}^{2} F(M_{k}^{2}, M_{Z}^{2}) \right]$$

$$\delta M_{L} = -\frac{1}{32\pi^{2}} (Y_{\Delta} R^{*})_{ik} M_{k} (R^{\dagger} Y_{\Delta})_{kj} \left[c_{\alpha}^{2} F(M_{k}^{2}, M_{H^{0}}^{2}) - c_{\theta}^{2} F(M_{k}^{2}, M_{A^{0}}^{2}) \right]$$

$$M_{\nu} = M_{L} - M_{\rm D} M_{\rm R}^{-1} M_{\rm D}^{T} + \delta M_{L} + \delta M_{I} \approx M_{L} (1 - \delta_{II}) - M_{\rm D} M_{\rm R}^{-1} M_{\rm D}^{T} (1 - \delta_{I})$$

2 EW precision measurement constraint--- $(g-2)_{\mu}$

The current experimental data

E821 - Final Report: hep-ex/0602035

$$a_{\mu}^{\text{exp}} = (11659208 \pm 6) \times 10^{-10}$$
 $\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 22(10) \times 10^{-10}$

Heavy neutrinos, doubly and singly charged Higgs contribute to g-2

$$a_{\mu}^{N} = \frac{G_{\rm F} m_{\mu}^{2}}{8\sqrt{2}\pi^{2}} \sum_{i} R_{\mu i} R_{i\mu}^{\dagger} \left[I \left(M_{\rm W}^{2}, M_{i}^{2} \right) - 10/3 \right] ,$$

$$a_{\mu}^{\Delta} = \frac{1}{16\pi^{2}} \sum_{\alpha=e,\mu,\tau} |(Y_{\Delta})_{\mu\alpha}|^{2} \left[I_{1}(m_{\alpha}^{2}, m_{\Delta}^{2}) + I_{2}(m_{\alpha}^{2}, m_{\Delta}^{2}) \right] ,$$

$$a_{\mu}^{\delta} = \frac{1}{16\pi^{2}} \sum_{\alpha} |(Y_{\Delta})_{\mu\alpha}|^{2} (VV^{\dagger})_{\alpha\alpha} I_{3}(m_{\mu}^{2}, m_{\delta}^{2}) ,$$

$$\Delta a_{\mu} = a_{\mu}^{\Delta} + a_{\mu}^{\delta} + a_{\mu}^{N}.$$

For details, see, Chao, arXiv:0806.0889

R_{ei}~0, R_{ui}~ R_{ti}~0.1 in our chosen parameter space. А. В.

 Δa_{μ} is proportional to M_N .

Given 200 GeV < M_{Δ} < 500 GeV, the upper bound for M_N is 310.5 GeV. С.

3 EW precision measurement constraint---LNV

I. Neutrinoless double beta decay

II. LNV rare meson decays $M \rightarrow M' + I_a + I_{\beta}$

$$\Gamma_{\alpha\beta} = \frac{G_{\rm F}^4 m_M^7}{128\pi^3} f_M^2 f_{M'}^2 |K_V|^2 \langle R_{\alpha i} R_{\beta i} / M_i + (M_{\rm L})_{\alpha\beta} / M_{\xi}^2 \rangle^2 \Phi_{\alpha\beta}$$

Constraints from LNV decays of mesons

	\square		
Decay modes	Experimental constraints	$\Phi_{\alpha\beta}$	$\langle R_{\alpha i} R_{\beta i} / M_i + (M_{\rm L})_{\alpha \beta} / M_{\xi}^2 \rangle {\rm GeV}^{-1}$
$B^+ \to \pi^- e^+ e^+$	1.6×10^{-6}	0.0499	$3.82 imes 10^4$
$B^+ \to \pi^- \mu^+ \mu^+$	1.4×10^{-6}	0.0495	$3.58 imes 10^4$
$B^+ \to \pi^- e^+ \mu^+$	1.3×10^{-6}	0.0995	2.43×10^4
$B^+ \to K^- e^+ e^+$	1.0×10^{-6}	0.0491	$1.07 imes 10^5$
$B^+ \to K^- \mu^+ \mu^+$	1.8×10^{-6}	0.0487	1.43×10^5
$B^+ \to K^- e^+ \mu^+$	2.0×10^{-6}	0.0977	$1.07 imes 10^5$
$D^+ \to \pi^- e^+ e^+$	3.6×10^{-6}	0.0494	$4.53 imes 10^4$
$D^+ \to \pi^- \mu^+ \mu^+$	4.8×10^{-6}	0.0464	$5.39 imes 10^4$
$D^+ \to \pi^- e^+ \mu^+$	5.0×10^{-5}	0.0957	1.21×10^5
$D^+ \to K^- e^+ e^+$	4.5×10^{-6}	0.0394	$5.17 imes 10^4$
$D^+ \to K^- \mu^+ \mu^+$	1.3×10^{-5}	0.0365	$9.14 imes 10^4$
$D^+ \to K^- e^+ \mu^+$	1.3×10^{-4}	0.0758	$2.00 imes 10^5$
$K^+ \to \pi^- e^+ e^+$	$6.4 imes 10^{-10}$	0.0377	$8.00 imes 10^2$
$\left K^+ \to \pi^- \mu^+ \mu^+ \right $	$3.0 imes 10^{-9}$	0.0108	$3.40 imes 10^3$
$K^+ \to \pi^- e^+ \mu^+$	5.0×10^{-10}	0.0367	8.00×10^{2}

(4) Signatures of N and Δ at the LHC

Numerical results (A minimal case with only 1 N and 1Δ)

Gu, Zhang and Zhou PRD 06

3.1 complex matrix R can be parameterized by 3 rotation angles and 3 phases ---Xing, PLB 2008

$$\begin{split} R &= \begin{pmatrix} s_{14}^* \\ c_{14}s_{24}^* \\ c_{14}c_{24}s_{34}^* \end{pmatrix} = \begin{pmatrix} s_{14}^* \\ s_{24}^* \\ s_{34}^* \end{pmatrix} + \mathcal{O}\left(s_{ij}^3\right) \\ \textbf{A typical input : } s_{14} = 0, s_{24} = s_{34} = 0.1 \\ \begin{vmatrix} RR^{\dagger} \\ RR^{\dagger} \\ \end{vmatrix} = \begin{pmatrix} s_{14}^2 < 1.1 \times 10^{-2} & s_{14}s_{24} < 7.0 \times 10^{-5} & s_{14}s_{34} < 1.6 \times 10^{-2} \\ s_{14}s_{24} < 7.0 \times 10^{-5} & s_{24}^2 < 1.0 \times 10^{-2} \\ s_{14}s_{34} < 1.6 \times 10^{-2} & s_{24}s_{34} < 1.0 \times 10^{-2} \\ s_{14}s_{34} < 1.6 \times 10^{-2} & s_{24}s_{34} < 1.0 \times 10^{-2} \\ s_{14}s_{34} < 1.6 \times 10^{-2} & s_{24}s_{34} < 1.0 \times 10^{-2} \\ \end{vmatrix} \\ \textbf{\Gamma}\left(H^{\pm\pm} \rightarrow l_{\alpha}^{\pm}l_{\beta}^{\pm}\right) &= \frac{M_{1}^{2}M_{\Delta}}{8\pi(1+\delta_{\alpha\beta})v_{\Delta}^{2}}|R_{\alpha1}|^{2}|R_{\beta1}|^{2} \\ \textbf{R}\left(H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}\right) \approx \frac{s_{24}^{4}}{(s_{24}^{2}+s_{34}^{2})^{2}}, \\ \textbf{R}\left(H^{\pm\pm} \rightarrow \mu^{\pm}\tau^{\pm}\right) \approx \frac{2s_{24}^{2}s_{34}^{2}}{(s_{24}^{2}+s_{34}^{2})^{2}}, \end{aligned}$$

Correlative signatures of N and Δ

Concluding remarks

- A testable TeV-scale type-I+II seesaw scenario is proposed.
- Constraints from EW precision measurement are considered.
- Collider signatures are discussed.
- \bullet Further work is necessary to distinguish LNV signatures of N from those of $\Delta.$

Thank you