TeV-EeV Neutrinos from GRB

Péter Mészáros Pennsylvania State University

Neutrino production in baryonic GRB

3 types of neutrino energy & timescale, depending on shock location

UHE neutrinos from GRB $p\gamma$, $pp \rightarrow UHE \ V$, γ

- If protons present in (baryonic) jet $\rightarrow p^+$ Fermi accelerated (as are e⁻)
- $\mathbf{p}, \mathbf{\gamma} \rightarrow \pi^{\pm} \rightarrow \mu^{\pm}, \mathbf{v}_{\mu} \rightarrow \mathbf{e}^{\pm}, \mathbf{v}_{e}, \mathbf{v}_{\mu}$ (Δ -res.: $\mathbf{E}_{\mathbf{p}} \mathbf{E}_{\mathbf{\gamma}} \sim 0.3 \text{ GeV}^2$ in jet frame)

•
$$\rightarrow E_{\nu,br} \sim 10^{14} \text{ eV}$$
 for MeV γs (int. shock)

- $\rightarrow E_{v,br} \sim 10^{18} \text{ eV} \text{ for } 100 \text{ eV } \gamma \text{s} \text{ (ext. rev. sh.)}$: ICECUBE
- $\rightarrow \pi^0 \rightarrow 2\gamma \rightarrow \gamma\gamma$ cascade **GLAST, ACTs.**
- Test hadronic content of jets (are they pure MHD/ e^{\pm} , or baryonic ...?)
- Also (if dense): $\mathbf{p}, \mathbf{\gamma} \to \pi^{\pm} \to \mu^{\pm}, \mathbf{v}_{\mu} \to \mathbf{e}^{\pm}, \mathbf{v}_{e}, \mathbf{v}_{\mu}$
- Test acceleration physics (injection effic., $\boldsymbol{\epsilon}_{e}, \boldsymbol{\epsilon}_{B}$..)
- Test scattering length (magnetic inhomog. scale?..or non-Fermi?..)
- Test shock radius: $\gamma\gamma$ cascade cut-off:
- $E_v \sim GeV$ (internal shock) ; $E_\gamma \sim TeV$ (ext shock/IGM)

UHE V in GRB

Various collapsar **GRB** v-sites

- 1) at collapse, similarly to supernova core collapse, make GW + thermal v (MeV)
- 2) If jet outflow is baryonic, have p,n
- \rightarrow p,n relative drift, **pp/pn** collisions
- \rightarrow inelastic nuclear collisions

 \rightarrow VHE V(GeV)

- 3 Int. shocks while jet is inside star, accel. protons → pγ, pp/pn collisions
 → UHE ∨ (TeV)
- 4) internal shocks below jet photosphere, accel. protons → pγ, pp/pn collisions → UHE v (TeV)
- 5) Internal shocks outside star accel. protons
 - \rightarrow p γ collisions \rightarrow UHE ν (100 TeV)
- 6) \leftarrow External rev. shock: $\rightarrow \mathbf{p}\gamma \rightarrow \mathbf{EeV} \vee (\mathbf{10^{18} eV})$

"Hadronic" GRB Fireballs: Thermal p,n decoupling \rightarrow VHE ν,γ

• p,n in fireball move together while

- t_{pn} > t_{exp} (rad. acts on p, while elastic scattering couples p,n)
- **p,n** decouple when $t_{pn} \gtrsim t_{exp}$, where
- this occurs for $\Gamma \gtrsim 400$
- (Derishev etal 99; Bahcall,Meszaros 00; Fuller etal 00)
- Inelastic pn :
 - $\rightarrow \pi^{\pm} \rightarrow \mu^{\pm}, \nu_{\mu} \rightarrow e^{\pm}, \nu_{e}, \nu_{\mu}$
- $ightarrow \pi^0
 ightarrow 2\gamma$
- $E_{\nu\mu}$ ~5-10 GeV \rightarrow ICECUBE?
- det @ z~1, Rv~7/yr from all GRB,
 but only if larger PMT density
- γ -rays: $\pi^0 \rightarrow 2\gamma$, \rightarrow GLAST, • $E_{\gamma} \sim 10$ GeV, detect @ z ≤ 0.1

vs from pγ in internal & external shocks in GRB

- Shocks accelerate p⁺ (as well as the e⁻ which produce γ_{MeV})
- Δ -res.: E'_p E'_Y ~0.3GeV² in comoving frame, in lab:
- $\rightarrow E_p \ge 3x10^6 \Gamma_2^2 \text{ GeV}$
- $\rightarrow E_{v} \ge 1.5 \times 10^{2} \Gamma_{2}^{2} \text{ TeV}$
- Internal shock p, γ_{MeV}
- \rightarrow ~100 TeV vs
- External shock p, γ_{UV}
- $\rightarrow \sim 0.1-1 \text{ EeV}$
- Diffuse flux: detect in km³

GRB 030329: v precursor, burst, and afterglow, with ICECUBE

Burst of Ly~10⁵¹ erg/s, $E_{SN} \sim 10^{52.5}$ erg, q~68°, @ z~0.17

Flux	TeV-PeV		PeV-EeV	
Component	μ -track	e-cascade	μ track	e-cascade
Precursor I	$9 \cdot 10^{-3}$	$2 \cdot 10^{-3}$	-	-
	$6 \cdot 10^{-3}$ \uparrow	$2 \cdot 10^{-3}$ \uparrow	-	-
	$0.01 \rightarrow$	$2\cdot 10^{-3} \rightarrow$	-	-
Precursor II	4.1	1.1	$3 \cdot 10^{-3}$	$2 \cdot 10^{-4}$
	2.9 ↑	0.9 ↑	-	-
	$4.4 \rightarrow$	$1.2 \rightarrow$	$0.01 \rightarrow$	$8 \cdot 10^{-4} \rightarrow$
Burst	1.8	0.2	1.4	0.1
	0.3 ↑	$0.04 \uparrow$	-	-
	$2.9 \rightarrow$	$0.3 \rightarrow$	$7.6 \rightarrow$	$0.4 \rightarrow$
Afterglow	$2 \cdot 10^{-4}$	$2 \cdot 10^{-5}$	$2 \cdot 10^{-4}$	$1 \cdot 10^{-5}$
(ISM)	$3 \cdot 10^{-5}$ †	$4 \cdot 10^{-6}$ †	-	-
	$2 \cdot 10^{-4} \rightarrow$	$2\cdot 10^{-5} \rightarrow$	$0.01 \rightarrow$	$5 \cdot 10^{-4} \rightarrow$
Afterglow	0.03	$3 \cdot 10^{-3}$	0.05	$3 \cdot 10^{-3}$
(wind)	$5 \cdot 10^{-3}$ †	$7 \cdot 10^{-4}$ †	-	-
	$0.05 \rightarrow$	$5 \cdot 10^{-3} \rightarrow$	$1.4 \rightarrow$	$0.06 \rightarrow$
Supranova	12.4	2.4	0.5	0.03
0.1 d	$6.1 \uparrow$	1.6 ↑	-	-
	$14.9 \rightarrow$	$2.7 \rightarrow$	$1.6 \rightarrow$	$0.1 \rightarrow$
Supranova	12.4	2.4	0.5	0.03
1 d	$6.1 \uparrow$	1.6 ↑	-	-
	$14.9 \rightarrow$	$2.7 \rightarrow$	$1.9 \rightarrow$	$0.1 \rightarrow$
Supranova	10.9	2.2	0.4	0.03
8 d	$5.4 \uparrow$	$1.4 \uparrow$	-	-
	$13.2 \rightarrow$	$2.4 \rightarrow$	$1.7 \rightarrow$	$0.1 \rightarrow$

Razzaque, Mészáros, Waxman 03 PRD 69, 23001

Internal shock v's, contemp. with γ 's

Detailed v_{μ} diffuse flux incl. cooling, using GEANT4 sim., integrate up to z=7, $U_p/U_y=10$ (left); z=20, $U_p/U_y=100$ (right)

GRB "Photospheric " Neutrinos

- GRB relativistic outflows have a Thomson scattering $\tau_T \sim 1$ "photosphere", below which photons are quasi-thermal
- Shocks and dissipation can occur below photosphere.
- Acceleration of protons occurs, followed by pp and pγ interactions → neutrinos
- Gas and photon target density higher than in shocks further out.
- Characteristics resemble precursor neutrino bursts, but contemporan. with prompt gamma-rays

- Crucial parameter for neutrino (and CR) flux is U_p/E_e .
- Note that ν 's from pion decay are good targets too (not just muon decay)
- For typical values U_p/E_e ~ 30 needed to make GRB "interesting" UHECR sources, the neutrino flux might be detectable from *individual* GRB sources at *z~0.1* with <u>JEM-EUSO</u> (K. Asano et al, 2008, in prep.)

Core collapse SN : slow jets?

Spectrum and diffuse flux ↑

Razzaque, Mészáros, Waxman, 2004, PRL 93, 181101 Ando & Beacom, 2005, PRL 95, 1103

- Maybe all core coll. (or lb/c) SN resemble (watered-down) GRB?
- Evidence for asymmetric expansion of c.c. (lb/c) SNR: slow jets Γ~ few ?
- If so, accel protons while jet inside star, pγ→π,μ→ ν (TeV)
- Diffuse flux: negligible,
- but
- individual SN in nearby (2-3 Mpc) gals, e.g. M82, NGC253, detectable (if have slow jets),

at a rate ~ 1 SN/5 yr, fluence ~2 up-muons/SN

(hypernova: 1/50 yr, 20 up-μ), negligible background, in km³ detectors - ICECUBE

Model-dependence of predictions & detectability of GRB V

- $E_{\nu} \sim 100 \text{ TeV}$ (simult.) are least model dependent
- (use observed MeV $\gamma\,$ and same shocks as accelerate e^{\pm})
- $E_{\nu} \sim 1 \text{ TeV}$: (precursor) more model dependent,
- (assume collapsar, sub-stellar jet, and $R_{g}t \ 10^{11} \text{ cm}$)
- E_v ~ 10¹⁷ eV : (afterglow) need assume reverse shock prompt opt flash is ubiquituous (?)
- Ev ~ 5 GeV: (decoupling) p,n likely, but detection needs special instrumentation (e.g. Deep Core)
- Ev~5-100 TeV : (pop III) speculative; very massive star envelope ejection and rotation rate? Constraints useful
- Ev~0.3-1 TeV : (cc SN) if semi-rel. jets (fraction?)
- $E_{\nu} \sim 1 \text{ TeV}$: (photosph. v) *if* sub-photospheric dissip. (?)

GRB GZK cosmogenic neutrinos

Yuksel & Kistler 07 PRD 75:083004

If GRB make the GZK UHECR, then:

V flux dep. on GRB rate vs. z (from $z >> R_{GZK}$)

Potential of Cosmogenic Vs for CR Composition

- If CRs have large fraction of heavies, depending on source distance, photodissociation opt. depth could be <1 → only some of them break up into p,n
- Implies smaller fraction contributes to π⁺ and cosmogenic V production (Anchordoqui et al 06)
- Cosmogenic v flux vs. CR flux may help resolve discrepancy between Auger X_{max} data and apparent correlation with AGN suggesting protons

ANtarctic Impulsive Transient Antenna

- Launched & flown 30 days in early 07

ARIANNA Concept 100 x 100 station array, ~1/2 Teraton

100×100 stations under the snow, sep. 300 m, pointed downwards *≯*

Reaching GZK sensitivity & Lowering the Theshold

JEM EUSO

- ISS project, orig. ESA/NASA/RSA/JAXA; precursor for **OWL** (free-flyer)
- $5.10^{19} 10^{21} \text{ eV}$ EECRs, EENUs
- Monocular 2.5m Fresnel lens, measure EAS via atmos. fluor. emiss
- Thresh: 3.10¹⁹ eV; Effic. @ 10²⁰ eV : 300-1000 event/yr
- Orig. launch: 2012, but shuttle?
- Current plan: JEM/JAXA, 2013 unmanned vehicle

Other Implications of GRB UHE $\boldsymbol{\nu}$

- **Special relativity**: simultaneity of arrival of v, γ
- tested to $\Delta t \leq 1 \text{ s} (10^{-3} \text{ s in short bursts})$
- Time delay due to v_i mass:
- $\Delta t (\nu_i) \sim 10^{-12} (D/100 Mpc) (E_{\nu_i}/100 TeV)^{-2} (m_{\nu_i}/eV)^2 s$ (whereas for SN 1987a Dt (n,)~ 10⁻⁸ s)
- Vacuum oscillations: at source expect $Nv_{\mu} \sim 2Nv_{e}$
- at observer get \neq ratios , and upgoing τ appear.
- \rightarrow sensitive to
- Δm² ~10⁻¹⁶ (E_ν/100TeV)(100Mpc/D) eV²

Conclusions

- UHE v will allow test of proton content of jets, test shock accel.physics, magn. field
- If UHE v NOT detected, \rightarrow jets are MHD!
- Probe v interactions at \gtrsim TeV CM energies
- Test SR, oscillations, v masses, vacuum disp.
- Constraints on stellar evolution and death, star formation rates at redshifts of first structures
- Could be probes of "pop III" first gen. Objects
- May test SN-GRB connection & transition
- Cosmogenic v : probe CR origins, sources
- New physics: need to know the boundaries of SM astrophysical UHENU mechanisms